

Improved Object Recognition -- The RoboCup 4 legged league

griffithuniversity

Vladimir Estivill-Castro

Computing and Information Technology

Nathan Lovell

Computing and Information Technology

Australia

A classifier is a table look up

C/C++ bit-wise AND operation Color_Orange=Y[y]&U[u]&V[v]

A Decision List is a Scan through the Bits of a Memory Word

griffithuniversi

color=Y[y]&U[u]&V[v] color_id=0 while (color & 1 == 0) { color>>=1; color_id++}

griffithuni

© V. Estivill-Castro and N. Lovell

The RoboCup Competition

- Dynamic environment
- Very rapid analysis of images
- Legged-league
 - SONY Aibo robots
 - Image is 174x144 pixels
 - 25 frames a second
 - YUV format (3 bytes per pixel)

Image Segmentation

griffithuniversi

Mapping is a classifier Color_class:YxUxV→Color Color_Class(y,u,v)=Orange |Y|x|U|x|V|=256³

Mi-PAL

griffithuniversity

9

Much faster than Artificial Neural Networks (ANN) or other classifiers k- Nearest neighbors (k-NN) and Decision Trees

- ANN using snns were 20K times slower
- *k*-NN with Quadtrees and DT
 (Weka) were 2K times slower

	DL	Look-up Table	Ratio
Maximum	2.87ms	2.46ms	1.16
Average	2.33ms	1.41ms	1.65
Minimum	2.08ms	1.27ms	1.63

Accuracy with Decision List is Marginally better

- ANN using snns were 20K times slower
- *k*-NN with Quadtrees and DT (Weka) were
 2K times slower

Algorithm	10-fold accuracy	Lowest accuracy per class	Largest 2- class confusion	size	Learning time	Test set accurac y
PART	99.0%	96% (yellow goal)	10 blue dog Vs gray dog	26 Rules	1.15s	99.3%
<i>k</i> -NN	99.3%	97% (blue dog)	8 red dog Vs gray dog	<i>k</i> =3 6,226 Instanc es	Os	99.7%
DT	98.8%	95% (yellow goal)	10 red dog Vs gray dog	34 leaves 67 nodes	1.27s	99.6%
Look-up Table	71.6%	64% (yellow goal)	45 yellow goal vs orange ball	11 rules	manual	68.2%

griffithunivers

Merging needs to unify blob ids exposed in the row above

- We avoid UNION-FINF algorithms
- A data structure to process a row as we create run-length encoding

Data Structure for

Current row

A sorted list of blobs exposed,

sorted by x-coordinate of left most pixel exposed in the current row

Processing a row is like merging sorted lists

Few blobs per line

Shape Finding

• We need a better boundary to use the skeleton (medial axis)

griffithuniversi

Sinuosity in boundary produces complex skeleton
 We need to find the boundary fast

Finding the boundaryTrace it

• Time proportional to the number *b* of pixels in boundary *Simplify the boundary*

- Douglas-Peucker Algorithm
- Time proportional to *b* log *b*

Find the skeleton

- Use Voronoi diagram of boundary segments
 - Time proportional to high level description of boundary
 - (less than *b*)

griffithunivers

Mi-721.

Attribute Oriented Graph

synthithum vers

- Nodes and Edges (as a graph)
 - Weights at nodes
 - The size of blob

and weights at edges

• The distance between centroids of blobs

Error Correcting Graph

Isomorphism

Input: Two attributed graphs Output: A permutation of the nodes that minimizes total dissimilarity

A difficult situation for identifying the red dog in the back

grittith in