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Model-Driven Engineering

* Approach in Software Engineering
Construct software / Safe Software / Quality Software
models rather than programs are the principal outputs of the
development process (Sommeville, 2009).
The programs that execute on a hardware/software platform
are then generated automatically from the models.

Raises the level of abstraction
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Javacode | 5| java program

J2EE specific

J2EE Ti lator —> —>
ransiator model generator
Platform
independent
model
NET specific C# code
_>
Net Translator model — generator C# program




Advantages of MDD

direct interpretation (or translation) of the models minimizes
faults (with respect to traditional software development and
deployment that translates requirements into implementations).

offers traceability of requirements as well as rapid refinement
and adaption.

* BUT
* all this is spurious if the model is not correct in the first place.

inconsistent
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ambiguous
incomplete
unsafe




MDD raises the stakes from
earlier on

* Importance of Model-Checking

Verify the model has correct behavior

* Importance of Failure Modes and Effects Analysis (FMEA)
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Verify the model is robust and the impact of failures is
understood

* NO INTERMIDIATE DEVELOPMENT PHASES
WHERE COMMON SENSE OF HUMANS WILL PREVAIL
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Finite-State Machines (FSM)

* Widely used model of behavior in embedded systems

* QP (Samek, 2008), Bot- Studio (Michel, 2004) StateWORKS (Wagner et al., 2006)

and MathWorks(OR StateFlow. The UML form of FSMs derives from OMT
(Rumbaugh et al., 1991, Chapter 5), and the MDD initiatives of Executable UML

(Mellor and Balcer, 2002). J— - B,EgITEG

LIFECY(
Modeling the World in States

Model Driven Architecture
with Executable UML™

PRACTICAL
UML STATECHARTS
IN 'y SECH ition

—>
loose possession

Defend

* Most common approach

* System is in a state
* Events change the state of the system

gain possession
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Logic-labeled FSMs

* A second view of time (since Harel’s seminal paper)
* Machines are not waiting in the state for events

* The machines drive, execute

* The transitions are expressions in a logic
© or queries to an expert system

are the fans misbehaving?
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e game over?

attack for a bit

| am injured?
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did the team lost possession?




Exam

le from robotic soccer

ORANGE_BLOB_FOUND

OnEntry { extern blobSizeX; extern blobSizeY;
extern blobArea; extern blobNumPixels;
toleranceRatio = 2; densityTolerance = 3;
badProportionXY = blobSizeX/blobSizeY > toleranceRatio;
badProportionYX = blobSizeY/blobSizeX > toleranceRation;
badDensityVsDensityTolerance =
blobArea / blobNumPixels > densityTolerance;

is_it_p_ball

% BallConditions.d
BALL_FOUND

name {BALLCONDITIONS}.

input{badProportionXY}.
input{badProportion¥X}.
input{badDensityVsDensityTolerance}.

BCO: {} => is_it a ball.

BCl: badProportionXY => ~is it a ball. BCl > BCO.

BC2: badProportionYX => ~is it a ball. BC2 > BCO.

BC3: badDensityVsDensityTolerance => ~is it a ball. BC3 > BCO.

output{b is_it a ball, "is it a ball"}.
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One Minute Microwave

* Widely discussed in the literature
of software engineering

* Analogous to the X-Ray machine

Therac-25 radiation machine that
caused harm to patients

(c) Vlad Estivill-Castro

* Important SAFETY feature

OPENING THE DOOR SHALL STOP
THE COOKING



Requirements

Requirements

Description

R1

There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
1s, energize the power-tube) for one minute

R2

If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3

Pushing the button when the door is open has no effect.

R4

Whenever the oven is cooking or the door is open, the light in the oven
will be on.

RS

Opening the door stops the cooking.
and stops the timer

and does not clear the timer

R6

Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7

If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

(c) Vlad Estivill-Castro




One of the FSMs

$ MicrowaveCook.d

name {MicrowaveCook}.

input{timeleft}.

input {doorOpen}.

CO: {1} => ~cook.

Cl: timelLeft => cook. C1 > CO.

C2:

output{b cook, "cook"}.

doorOpen => ~cook. C2 > CI1.

Microwave Engine

cook

_— T~

/' NOT_COOKING \

COOKING |

t

o

post/
Motion:Stop; Motion:On;

J
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Embedded systems are
performing several things

* The models is made of several finite state-machines

* With a rich language of logic, the modeling aspect is
decomposed

the action /reaction part of the system
the states and transitions of the finite-state machine

the declarative knowledge of the world

the logic system
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The complete arrangement

.\( Light
A SCTATTA Motor
2 NOT_SHINE_LIGHT doorOpen Il timeLeft 1 SHINE_LIGHT
OnEntry {int light; light=0;} _O_n_Erltr_y_{Ii_grltiL;}_
2 NOT_COOKING \ !doorOpen &8 timeleft _ | 1COOKING )

| S (LCIE 1 0 B ——
OnEntry {int motor; motor=0; OnEntry {motor=1;
Y /\ !doorOpen && ! timeLeft \{} ———,Xi —————————— b InEntry fmotor=17
OnExtg |  [OnBExdtG" = S
¢
.\ Be” doorOpen Il ! timeLef
N
2 OFF timeLeft 1 ARMED
OnEntry {int sound; sound=0;} | | OnEntry & _ _
OnExit {} OnExit {} o
_________________________ o
0 ) ¢ 2
©
— Q
4 1RINGING ) B
( ) OnEntry {sound=1;} E
timeout(2000000) = [T - T T T T T T T
OnExit
onExity ltimeLeft i
N J >
. true =
% T| buttonPushed && !doorOpen && (currentTime<4035) —
1INIT \ ( 2TEST )
OnEntry {int currentTime; extern buttonPushed OnEntry
extern doorOpen; currentTime=0} _ __ _ _ {timeLeft=0<currentTime} | IbuttonPushed
O O
0 } )

{
tru
ldoorOpen && timelLeft && timeout(1000000)

( 4 DECREMENT \ ( 3 ADD_60 \
OnEntry {currentTime=currentTime-1;} OnEntry {currentTime=60+currentTime;}
OnExit {} OnExit {timeLeft=1;}

& {
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Demo video

http://www.youtube.com/watch?v=t4uello67Xk&feature=relmfu




Contrast of sequential

execution
event-driven models time-triggered architecture
* allow open concurrency * prescribes the scheduling
* this means the state of the - reduced space of states of

system are all
combinations of states of
each thread

* models become complex - models are simpler

language constructs for
consistency

the system
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* model-checking becomes * model checking becomes
unfeasible feasible
* simulation is not

* SIMULATIONS are

repeatable
repeatable
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Mine Pump

Requirements

Description

R1

The pump extracts water from a mine shaft. When the
water volume has been reduced below the low-water
sensor, the pump is switched off. When the water
raises above the high-water sensor it shall switch on.

R2

An human operator can switch the pump on and off
provided the water level is between the high-water
sensor and the low-water sensor.

R3

Another button accessed by a supervisor can switch
the pump on and off independently of the water level.

R4

The pump will not turn on if the methane sensor
detects a high reading.

RS

There are two other sensors, a carbon monoxide
sensor and an air-flow sensor, and if carbon monoxide
is high or air-flow is low, and alarm rings to indicate
evacuation of the shaft.
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Models are

two FSMs

= the logic part not illustrated

0\

4 ) alarmOn
onE 2 NOJ—:'NG'NG / 1 RINGING A
—O—nErl.tr—yi S OnEntry {bell=1;} |
OnExityy OnExit {}
1§ S Y
~alarmOn %
4 2 NOT_RUNNING ) pumpShallGoOnJ 1 RUNNING A

OnEntry { motor=0;}

OnEntry {motor=1;}

jonexitly  __ _ _______4 [ OnExit{y ______
& &
N J\ pumpShallGoOff /\ =
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%Alarm.d

The lOglC name{ALARM}.
input{CO2SensorHigh}.

part Of the input{airFlowLow}.

AO: {} => ~alarmOn.

m O d elS Al: CO2SensorHigh => alarmOn. A1>A0.
A2: airFlowLow => alarmOn. A2>A0.
output{b alarmOn,"alarmOn"}.

name{MINEPUMP}.

input{lowWaterSensorOn}. input{highWaterSensorOn}. input{operatorButtonOn}. g
input{methaneSensorHigh}. input{indicateOn}. input{indicateOff}. &‘G
PO: {} => ~pumpShallGoOn. E
P1: highWaterSensorOn => pumpShallGoOn. P1>PO. L
P2: lowWaterSensorOn => ~pumpShallGoOn. P2>P1. E
P3: {~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> pumpShallGoOn. P3>P2. P3>PO0. ,>J
P4: {~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> ~pumpShallGoOn. P4>P3. —
P5: indicateOn => pumpShallGoOn. P5>P2. P5>P4. P5>PO0.

P6: indicateOff => ~pumpShallGoOn. P6>P5.

P7: methaneSensorHigh => ~pumpShallGoOn. P7>P5. P7>P3. P7>P1.

NO: {} => ~pumpShallGoOff.

N1: {~indicateOn,lowWaterSensorOn} => pumpShallGoOff. N1>NO.
N2: {~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> pumpShallGoOff. N2>NO.
N3: indicateOff => pumpShallGoOff. N3>NO.
N4: methaneSensorHigh => pumpShallGoOff. N4>NO.

output{b pumpShallGoOn,"pumpShallGoOn"}. output{b pumpShallGoOff,"pumpShallGoOff"}.




(indicateOn |l
.\/ Ao e \ (llowWaterSen & (highWaterSensorOn rButtonOn)))
= && lindicateOff
( 2 NOT_RUNNING \ && ImethaneSensorHigh 1 RUNNING \

_()_n_Erl.tr_yib_ell=9;l R O_nl_Erltr_y_{ mgtgrfo_:}_ O_nI_Erltr_y_(rEo_to_r=_1;_}_ B
[EE X S OnExit{y OnExit{}y
N 0 0
(lindicateOn && |l
(lowWaterSensorOn Il (!highWaterSensorOn && loperatorButtonOn))
Il indicateOff

Il methaneSensorHigh

CO2SensorHigh Il airFlowLow !CO2SensorHigh && !airFlowLow

1 RINGING
OnEntry {bell=1;}

S

é N supervisorButtonOn && !supervisorButtonOff ( 1 INDICTAE_ON \

2 INACTIVE
OnEntry {extern supervisorButtonOn; OnEntry { indecateOn=1; }
extern supervisorButtonOff; | — S A0
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extern supervisorButtonlnactive;
indecateOn=0; indicateOff=0;} \i - NI 4
—————————————————————— r r nOn ! r r
OnExit upervisorButto supervisorButto
& J

supervisorButtonOff && !superyisorButtonOn

supervisorButtonOff && IsupervisorButtonOn

4 1 INDICTAE_OFF \/
OnEntry { indecateOff=1; }

|

———————————————— supervisorButtonOn && !supervisorButtonOff

IsupervisorButtonOnN&& !supervisorButtonOff
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Demo video

http://www.youtube.com/watch?v=y4mulLPQjASU
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Properties demonstrated by
model-checking

Property-1 “If CO, is high, the alarm must ring.”
Property-2 “If air flow is low, the alarm must ring.”
Property-3 “If methane levels are high, the pump must be turned off.”

Property-4 “If the supervisor switches off when running, the pump will
be turned off.”

Property-5 “If the operator turns her switch off when the pump is
running and the water level is neither low nor high, then the pump
motor goes off.”

Property-6 “The pump is turned on when the water is above the high
water sensor (and the low-water sensor’s signal is consistent with this),
unless the supervisor turns it off or methane levels are high.”

Property-7 “If the supervisor sets the switch to inactive and the pump
is running when the water is not above the high water sensor and the
low-water sensor indicates a low level, the pump turns off.”

Property-8 “If there is low methane, low water, and the pump is not
running, but the supervisor puts the switch to on, then the pump is
turned on.”
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FMEA

* Perform fault-injection

Simulate the bell (although not part of the software)

everything that can go wrong here
* missing transition

* missing statement

* incorrect statement

4 2 SILENT b bell

OnEntry {noise=0;}

4
> J\ Ibell

4 1 MAKING_NOISE A
OnEntry {nosie=1;}

OnExity __________
{

o 4
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Table at level 1

Failures Consequences
Property that fails

1 1213 4 15161718

CO2-sensor stuck high
CO2-sensor stuck low X

Airflow sensor stuck high X

Airflow sensor stuck low

Bell stuck ringing

Bell stuck not ringing X1 X

Supervisor button stuck in on X X

Supervisor button stuck in off X X X

Operator button stuck in on X

Operator button stuck in off X

Methane sensor stuck in high X X

Methane sensor stuck in low X

b

(High water) sensor stuck in on X

(High water) sensor stuck in off X X

s

(Low water) sensor stuck in on

(Low water) sensor stuck in off X X X

Motor stuck running X X | X X

Motor stuck not running X X




Industrial Press Requirements

Requirements | Description

R1 The plunger is initially resting at the bottom with the motor
off.

R?2 When power is supplied, the controller shall turn the motor
on, causing the plunger to rise.

R3 When at the top, the plunger shall be held there until the
operator pushes and holds down the button. This shall cause
the controller to turn the motor off and the plunger will begin
to fall.

R4 If the operator releases the button while the plunger is falling
slowly (above PONR), the controller shall turn the motor on
again, causing the plunger to start rising again, without
reaching the bottom.

R5 If the plunger is falling fast (below PONR) then the controller
shall leave the motor off until the plunger reaches the
bottom.

R6 When the plunger is at the bottom the controller shall turn

the motor on: the plunger will rise again.

(c) Vlad Estivill-Castro




! signalPlungerAtTop

e

( PressAtTop \ ( PressAwayFromTop \
OnEntry OnEntry

& sensorAtTopActive=1;} J hsensorAtTopActive:O;}
TO p Se n Sor\ signalPlungerAtTop

! signalPlungerBelowRONR /.

(IndicatingPressHIGHerThanPONR\ ﬂndicatingPressLOWerThanPONF“

LOnEntry {low=0;} J OnEntry {low=1;}
ignalPlungerBelowPON se n So r

The complete model

=== with peripherals for
model checking and FMEA

signalPlungerAtBottom

/.

( IndicatingPressAtBottom \

( Indicating PressAwayFromBottom\

OnEntry OnEntry
{ sensorAtBottomActive=0;} {sensorAtBottomActive=1;}

bottom sensor \!signalPlungerAtBottom/

loperatorPusshingButton

.

ButtonPressed

\

( ButtonlsReleased

OnEntry
{buttonPushed=0;}

OnEntry
{ buttonPushed=1;}

|

~~operatorPushingButton~
button

| signalMotorOn

( ElectricMotorOff

OnEntry
{motorOn=0;}

( ElectricMotorOn \

OnEntry
{ motorOn=1;}

signalMotorOn

Operator ! motorOn
PlungerRisingAbovePONR \ ( PlungerFallingSlow |
N J N J
\ motorOn

! signalMotorOn

\/.

( ElectricMotorOff W
OnEntry
{motorOn=0;}
motor

( ElectricMotorOn \

OnEntry
{ motorOn=1;}

signalMotorOn

N, @

sensorAtBottomActive

; / motorOn && sensorAtBo!!omActiv\e

PlungerRisingBelowPONR

! motorOn

( PlungerAtBottom
LOnEntry{ pIungerRisingBeIowPONR:O;)J
I lpw

OnEntry{ plungerRisingBelowPONR=1;}
OnExit{ plungerRisingBelowPONR=0;}

™~
J ( PlungerFallingFast \

sensorAt[TopActive

PlungerAtTop

! motorOn

plunger

(c) Vlad Estivill-Castro




Contrast with Behavior Trees

,,,,,,,

l B " -
= == | == =

Grunske et al
Softw. Pract. Exper. 2011;

41:1233-1258

Incorrect modeling of sequence of events after the press falls down
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http://www.youtube.com/watch?v=blUpMdH14pM
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Properties demonstrated by
model-checking

Property-1 “If the operator is not pushing the button and the
plunger is at the top, the motor should remain on”.

Property-2 “If the plunger is falling below the PONR, a state
modeled by the plunger falling fast, then the motor should
remain off.”
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Property-3 “If the plunger is falling above the PONR, a state
modeled by falling slow, and the operator releases the button,
the motor should turn on, before the plunger changes state.”

Property-4 “Once the plunger is down, a new signal is needed to
turn the motor on and raise the plunger again.”




Table level 1

Failures

Consequences

Pro

erty that fails

]

2

3

4

[ Bottom sensor stuck indicating press away from bottom

X

Bottom sensor stuck indicating press at bottom

PONR sensor stuck on above PONR

PONR sensor stuck on below PONR

Top sensor stuck indicating press away from top

[ Top sensor stuck indicating press at top

" Operator button stuck on pressed

Operator button stuck on released

Motor fails, leaves motor stuck on running

Motor fails, leaves motor stuck on off

Power switch button stuck to supply power

g X X XA

[ Power switch button stuck to no power
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Simulation, Model-checking
and FMEA

* Ensure quality and safety
software in embedded controllers

* Logic-labeled vectors of FSM, sequentially scheduled

provide more succinct models
validated

with clear semantics

that
can be simulated
can be exported to various platforms
* (model-driven development)

can be model-checked
* (in a matter of seconds, as opposed to days of CPU time)

can be examined with fault-injection
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Thank you

Any Questions?
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