High Performance Relaying of
C++11 Objects

across Processes

and

Logic-Labeled

Finite-State Machines

V. ESTIVILL-CASTRO*

*Griffith University, Nathan Campus,
Brisbane, Australia.

v.estivill-castrol @griffith.edu.au,

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

In collaboration with Rene Hexel, Carl Lusty and many other members of MiPal

—
(Y
—




Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard
* What do they do?
* Finite-State Machines (FSM)
> Logic-labeled FSMs

Examples

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
N
|

Conclusions
* What can | do so you would use them?




Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard
* What do they do?
* Finite-State Machines (FSM)
> Logic-labeled FSMs

Examples

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
w
|

Conclusions
* What can | do so you would use them?




clfsm: compiled logic-labeled
finite-state machines

Complete POSIX and C++11 compliance.

Open source catkin ROS package release (mipal.net.au/downloads.php).
Transitions are labeled by Boolean expressions (not events), facilitating formal verification
and eliminating all need for concerns about event queues.

Transition labels are arbitrary C++11 Boolean expressions, enabling reasoning into what
may otherwise seem a purely reactive architecture.

Handling of machines constructed with states that have UML 2.0 (or SCXML) OnEntry,
OnExit, and Internal sections with clear semantics.

Guaranteed sequential ringlet schedule for the concurrent execution of FSMs (removing
the need for critical sections and synchronization points).

Efficient execution as the entire arrangement runs as compiled code without thread
switching.

Being agnostic to communication mechanisms between machines, allowing, for example

use with ROS : services and ROS :messages — however, we recommend the use of
our class-oriented gusimplewhiteboard.

Mechanisms for sub-machine hierarchies and introspection to implement complex
behaviors. FSMs can be suspended, resumed, or restarted, as well as queried as to
whether they are running or not.

Formal semantics that enables simulation, validation, and formal verification.

Associated tools such as (MiEditLLFSM and MiCASE) that enable rapid development of
FSM arrangements.

Tested in 64-bit, 32-bit CPUs and even 8-bit controllers like the Atmel AVR.

o
—
+
(%)
©
<
>
E=
(%)
(WH]
©
Ly
>
e




Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard
* What do they do?
* Finite-State Machines (FSM)
> Logic-labeled FSMs

Examples

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
(9]
|

Conclusions
* What can | do so you would use them?




Finite-State Machines (FSM)

* Widely used model of behavior in embedded systems

QP (Samek, 2008), Bot- Studio (Michel, 2004) StateWORKS (Wagner et al.,
2006) and MathWorks(OR StateFlow. The UML form of FSMs derives from
OMT (Rumbaugh et al., 1991, Chapter 5), and the MDD initiatives of
Executable UML (Mellor and Balcer, 2002).

A\ 2ot Mt
Click to LOOK INSIDE!
SALLY SHLAER / STEPHEN | MELLOR

OBJECT-ORIENTED ==~ Modeling Software

MODELING . b A BJECT
AND with Finite State AV Model Driven Architecture L. H‘QECYCI ES
DESIGN Machines with Exocutable SN Modeling the World in States

A Practical Approach

PRACTICAL

UML STATECHARTS
Edition

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

* The original Subsumption Architecture was implemented using the
Subsumption Language

* It was based on finite state machines (FSMs) augmented with
timers (AFSMs)

* AFSMs were implemented in Lisp

—
(o)}
|




State Diagram /
Finite State Automaton | it

transitions

Light
visible

In UML,

Light NOT visible

—

—
visible

/

Light visible

Follow the Light




o
=
+
(%]
(4]
<
E
E=
(%]
(WH]
p
©

Follow the Light

LabVIEW (short for Laboratory Virtual Instrument Engineering Workbench)
LEGO RobolLab

—
(0.0]
|




Robot control (philosophies)

* Open Loop Control

Just carry on, don’t look at the environment

* Feedback control _
-~ No use of logic

Minimize the error to the desired state

* Reactive Control no use of common sense

Don’ tthink, (re)act.

. no intelligence?
* Deliberative (Planner-based/Logic -based) Control

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

Think hard, act later.
* Hybrid Control
Think and act separately & concurrently.

* Behavior-Based Control (BBC)

—
(o}
|

Think the way you act.




How is a robot architecture
organized

DELIBERATIVE REACTIVE

Purely Symbolic Reflexive

SFEED OF RESPONSE -

PREDICTIVE CAPABILITIES

-

PEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Representation-free
Real-time response
Low-level intelligence
Simple computation

Representation -dependent
Slower response

High-level intelligence (cognitive)
Yariable latency

From “Behavior-Based Robotics” by R. Arkin, MIT Press, 1998

(c) Vlad Estivill-Castro




Logic-labeled FSMs

* A second view of time (since Harel’s seminal paper)
* Machines are not waiting in the state for events
* The machines drive, execute

* The transitions are expressions in a logic
© or queries to an expert system

are the fans misbehaving?

e game over?

attack for a
blt | am injured?

did the team lost possession?

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
[HY
[N

—



ORANGE_BLOB_FOUND
OnEntry { extern blobSizeX; extern blobSizeY;

Example from robotic socce

Any C++11

AR extern blobArea; extern blobNumPixels; code
\é toleranceRatio = 2; densityTolerance = 3;
3? badProportionXY = blobSizeX/blobSizeY > tol
1 badProportionYX = blobSizeY/blobSizeX > tol
' badDensityVsDensityTolerance =
blobArea / blobNumPixels > densityTolerance;

o ______
o= (O
¢
-
is_it_a_ball
y Any C++11
% BallConditions.d =
BALL_FOUND Boolean &
>
=
input{badProportionXxY}. ( COdE) v
input{badProportion¥X}. @
input{badDensityVsDensityTolerance}. %

BCO: {} => is_it a ball.
BCl: badProportionXY => ~is it a ball. BCl > BCO.
BC2: badProportionYX => ~is it a ball. BC2 > BCO.
BC3: badDensityVsDensityTolerance => ~is it a ball. BC3 > BCO.

output{b is_it a ball, "is it a ball"}.

—
=
N

—

Logic labeled FSMs provide deliverative control



Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard

* What do they do?

* Finite-State Machines (FSM)
> Logic-labeled FSMs

* Examples

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
=
w

—

Conclusions
* What can | do so you would use them?




Example 1: Pure reactive control

» @ Worldinto

@ Viewpoint

@ Background

» @ PointLight

» @ PointLight

» & DEF FLOOR Solid

» @ DEF WALL Solid

v @ EPuck

translation 0.0585864 -6.75624e-05 0.287743
rotation 0.00019713 1 5.45964e-05 -0.535391

[ ]

®c

@ controllerArgs "
@ name "e-puck”

@ camera_windowPosition 0 0

EpuckFollowsLine.machine

Bt L O LT B o 4

New Open Save SaveAs Undo Redo Cut  Copy Paste Colors Fonts
L B P R v L v v I v v e P e P v v L . P Pl o L L. oL P o S P o
g
4 ¥ TURN_CAMERA ON h 4 v TURN_ONE ) f W GET_MAX_SPEED_AND_CAMERA WIDTH )
rroeocos On Enury On Entry ORERT
std::string ("STATE: H tate_name(); #ifdef DEBUG std::string ("STATE: "); st ate_name();
print_ptr(stateName); std::string “STATE: "); tate_name(); print_ptr(stateName);
| #endif print_ptr(stateName); #endif
8 robotID=0; #endif WEBOTS_NXT_encoders_t encoder_data_ptr;
9 speedToUse=200; Lfter MNGO) maxSpeed=M_PI = (encoder_data_ptr.get()).maxSpeed();
leftSpeed=0; rightSpeed=2; WEBOTS_NXT_bridge #ifdef DEBUG
cameraWidth=0; commandLeft (robotID,ROTATION_ENCODER, LEFT_MOTOR_DIFFERENTIAL,1); forintf(stderr,“maxSpeed Read %f\n",maxSpeed);
delta=0; maxSpeed=0.0; | fter mstzor WEBOTS_NXT_bridge #endif
//Follow magenta commandRight ( robotID,ROTATION_ENCODER,RIGHT_MOTOR_DIFFERENTIAL,1);
theChannel=GREEN_CHANNEL ; a_Command_Handler. set(commandLeft); On Exit
| //Follow blue a_Command_Handler.set(commandRight); WEBUTS_NXT_Drioge e
§ theChannel=RED_CHANNEL ; commandLeft (robotID,ROTATION_ENCODER, LEFT_MOTOR_DIFFERENTIAL,®); >
//Follow yellow On Exit WEBOTS_NXT_bridge i
theChannel=BLUE_CHANNEL ; commandRight ( robotID, ROTATION_ENCODER,RIGHT_MOTOR_DIFFERENTIAL,0); wn
WEBOTS_NXT_bridge a_Command(robotID,CAMERA,theChannel,1); a_Command_Handler.set(commandLeft); (N}
a_Command_Handler.set(a_Command) ; Internal a_Command_Handler. set(commandRight);
// STOP the motors o)
WEBOTS_NXT_bridge thetMotorCommand(robotID,MOVE_MOTORS, @, Tl S
s | o,false); ==
2 | a_Command_Handler.set(a_Command); >
On Exit Cm)
4 v FEEDBACK_CONTROL \ O
~—
Internal On Entry
#ifdef DEBUG
g std::string st “STATE: *); st ate_name(); print_ptr(stateName);
i 7 N\ #endif
v SET_MOTORS_SPEED WEBOTS_NXT_camera_t camera_data_ptr;
On Entry // the WIDTH is a property of the camera across all channels after_gs(30)
" " // WEBOTS_NXT_camera theActualCameraObject = camera_data_ptr.get();
std::string stateName("STATE: “); stateName cameraWidth = (camera_data_ptr.get()).width() ;
+=state_name(); print_ptr(stateName); a0 | // second parameter of a Camera Channel is the value of the middle point
| #endif T.ms(10) | /7 delta is the error to the desired state, as a feedback loop control model
H WEBOTS_NXT_bridge delta = ((camera_data_ptr.get() ).get_channel(theChannel)).secondParameter() -cameraWidth/2;
[ thetMotorCommand(robotID,MOVE_MOTORS, leftSpeed/ // set the speeds
rightSpeed. false); leftSpeed= speedToUse —d=abs(delta)+dxdelta;
//post the speed rightSpeed=speedTolse -4*abs(delta)-d+delta;
a_Command_Handler.set(thetMotorCommand);
Gl On Exit
3
3
K Internal Internal

* https://www.youtube.com/watch?v=F8K4V78vUbk&feature=youtu.be




Example 2: BatMan moves
(reactive control on a Nao)

I 4 END N

v INTAL M
nao_state.chest_pressed() #ifdef DEBUG
. On Entry forintf(stderr, "STATE: %s\n",
#ifdef DEBUG state_name());
forintf(stderr, "STATE: %s\n", state_name()); Ve N #endif
::n?:; ¢ Man") W TURN_RIGHT say("The End");
y("Bat Man"); = ;
On Entry nee.state = nag.state.etr.gatl);
On Exit #ifdef DEBUG On Exit
forintf(stderr, “STATE: %s\n", state_name());
Internal #endif Internal
\_ ) te_ptr.get(); \n20_state ate_ptr.get(); )
Inao_state.chest_press¢d()
after #f5(2000) ) && after ms(4000) &&
/( walk_post (WALK_ControlStatus(WALK Run, 8, @, 1, 5)); nao_state.chest_pressed( || (sonar (sonarRight < 21) motion_status_handler|get(
s ~ ).isRunning0)
v SONAR_VALUES On Exit
On Entry nao_state = nao_state ptr.cet();
#ifdef DEBUG
o (stderr, "STATE: %s\n", state_name()); Intemnal
#endif nag_state = r teptr.get();
say("Sonar values"); [ \
sensorValues=sensorHandler.get(); ¥ GAMEOVER
MOTION_Commands motion; sonarLeft = int ( sensorValues.sonar(Sonar::Left@)); On Entry
motion.GoToStance (Motions: :Kneeling_stance, Motions::Standing_stance); sonarRight = int (sensorValues.sonar(Sonar::Right@)); #ifdef DEBUG
motion_ptr.set(motion); N\ nao_state.chest_pressed() Li4sorarLeft < 21) || (sonarRight < 21)

forintf(stderr, "STATE: %s\n", state_name());
#en

f
On Exit "Game Over");

nao_state_ptr.get();

Internal

sensorValues=sensorHandler.get();

sonarLeft = int ( sensorValues.sonar(Sonar: walk_post (WALK_ControlStatus(WALK_Disconnect))
sonarRight = int (sensorValues.sonar(Sonar /~ N\ ;

#ifdef DEBUG after_ms(500) &8 feonarteft >  sonarRight < 50 Vv TURN_LEFT protected_usleep(30000);

forintf(stderr, “LEFT: %d RIGHT %d\n", sonarlLeft, sonarRight); 50) On Entry

MOTION_Commands motion;
motion.GoToStance (Motions::Standing_stance,

#ifdef DEBUG
fi stderr, "STATE: %s\n", state_name());

>
B
(%]
L
©
L
>
b

e Motions::Kneeling_stance);
nao_state = nao_state otr.get(); motion_ptr.set(notion);
N\ walk_post (WALK Ready); protected_msleep(15); P (2000000);
v WAL ABOUT walk_post (WALK_ControlStatus(WALK Run, 0, @, -1, 5)); MOTION_Commands motion2(false, false, true);
On Entry motion_ptr.set(motion2);
#ifdef DEBUG onEx
forintf(stderr, “STATE: %s\n", state_name()); fafter_ms(500) &% > 50) n Exit :
#endif nao_state = nao_state_ptr.get(); On Exit
Internal ]
nao_state = nao_state ptr.get(); Internal
nao_state = nao_state_ptr.get();
walk_post (WALK_Ready); protected_msleep(15); sensorValues=sensorHandler.get(); N\ J
after_ms(4000)&4 ! walk_post (WALK_ControlStatus(WALK_Run, 35, @, @, 5)); sonarLeft = int ( sensorValues.sonar(Sonar::Left@));

motion_status_haldler.get(.isRunning(]

sensorValues=sensorHandler.get();

sonarLeft = int ( sensorValues.sonar(Sonar::Lefte));
sonarRight = int (sensorValues.sonar(Sonar::Right@)); son: <50
#ifdef DEBUG

forintf(stderr, "LEFT: %d RIGHT %d\n", sonarLeft, sonarRight);
#endif

sonarRight = int (sensorValues.sonar(sunar::Mghto)):)

i On Exit
nag.state = nao.state ptr.getl);

Internal

nee.state = nao.state pir.get(); - Somariaft < 28) 1| sonarRight < 28)

sensorValues=sensorHandler.get();
sonarLeft = int ( sensorValues.sonar(Sonar::Lefte));
sonarRight = int (sensorValues.sonar(Sonar::Right®));

/

* https://www.youtube.com/watch?v=gN6rlveCWNk&feature=youtu.be




Example 2: BatMan moves
(reactive control on a Nao)

nao_state.chest_pre:

after_ms(2000)

1

nao_state.chest| press
ed( &&
after_ms(4000)|8& !

motion_status_hand...

after_ms(4000 !
motion_status_pandle
after_ms(500

r.get().isRunnin|

) || (sonarRight < 21)

nao_state.chest_pressed() || (sonarLeft

GAME_OVER

nao_state.chest_pressed() || (sonarLeft < 28) || (sonarRight < 28)

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

1) || (sonarRight <

nao_state.chest_pressed() || {sonarl

after_ms(500) && (sona

sonarleft < 50

—
=
(O))]

—

* https://www.youtube.com/watch?v=gN6rlveCWNk&feature=youtu.be




Example 3: Reactive control

e,

< EE w4

IolllllllllllbolllllIlllzbolIlllllIIsbolllIlllll4bolllllllllsbolllllllllsbollllllll|7bollllll

=]
f v Initial \ ( W STRAIGHT \
On Entry On Entry
int argc = @; msg->linear.x = 2.0;
static char xargv[] = { "blindturtlebot" }; msg->angular.z = 8.9;

% ros::init(argc, argv, "blindturtlebot"); after #f5(1000) chatter_pub.publish(*msq);
n=new ros::NodeHandle();
msg= new geometry_msgs::Twist();
chatter_pub = n->advertise<geometry_msgs::Twist>("/ SiEn
turtlel/cmd_vel™, 1000); ros::spinOnce();

5 msg->linear.x = ©.0;

3 msg->linear.y = ©.0; Internal
msg->linear.z = 0.0; )
msg->angular.x = 8.9;
msg->angular.y = 0.9;
msg->angular.z = 0.9; after_np5(1000)

% after_af5(1000)

S On Exit

( ¥ TURN_RIGHT
On Entry
Internal
\_ msg->linear.x = ©.0;

a msg->angular.z = -2.0;

=

z chatter_pub.publish(*msg);

On Exit
ros::spinOnce();

s Internal

2

2 N J

RosBlindTurttleBot TURN_RICHT

Variables + | -

Type Name Cox
ros::NodeHandle* n
ros::Publisher chatter_pub
geometry_msgs:Twist * msg

Directory doalic

SGUNAO_DIR/Common
SGUNAO_DIR/posix/gusimplewhiteboard
SGUNAO_DIR/posix/gufsm/cifsm
SGUNAO_DIR/posix/gufsm/cifsm
SGUNAO_DIR/posix/gufsm
SHOME/src/MiPal/GUNao/Common
SHOME/src/MiPal/GUNao/posix/gusimplewhiteboard
SHOME/src/MiPal/GUNao/posix/gufsm/clfsm
SHOME/src/MiPal/GUNao/ posix/gufsm
SMACHINE_DIR
SMACHINE_DIR/S{BUILD_SUBDIR}

Includes

#include “ros/ros.h"
#include “geometry_msgs/Twist.h"
#include "ClMacros.h"

#include <sstream=>

* https://www.youtube.com/watch?v=AJYA2hB4i9U&feature=youtu.be

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
o




A turtle afraid of the walls

m RosWallTy

P 7 ¥~ L L P~ L L L L ' L L 7 L L P ¥ B L L L P= Y L L L P Y L L LB P Y BB BB F1. USSR L) 7. PRI BB BLIL P PRI

0

Variables

v sTOP

e I T I | I~ I

¥ Initial

msg; new geometry_msgs::Twist();

chatter_pub = n-
>advertise<geometry_msgs::Twist>("/turtlel/
cmd_vel™, 1000);

client = pos_n-
>serviceClient<beginner_tutorials::TurtlePo
sition>("turtle_position");

msg->linear.x = 2.0;
msg->linear.y = 0.0;
msg->linear.z = 0.0;
msg->angular.x = 0.90;
msg->angular.y = 0.0;
msg->angular.z = 0.9;

On Entry

after_ms(1000)

after_g#5(1000)

/ W TURN_RIGHT \

msg->linear.x = 2.0;
msg->angular.z = 0.8;

chatter_pub.publish(*msg);

0s::spinOnce(); Py

On Entry

On Exit

\ Imernalj

On Exit

msg->linear.x = 0.0;
msg->angular.z = -2.0;

chatter_pub.publish(*msg);

ros::spinOnce();
On Entry

\ Imernay

On Exit

\_ In!ernay

pos_x>2 && pos_y>2 &&

) Leargok()
lros::ol
END
!rpstiok) Iros::gk()
Iros::0!

/ ¥ BACK \
msg->linear.x = -1.9;
msg->angular.z = 0.8;

(1000)

chatter_pub.publish(*msg);

ros::spinOnce();
On Entry

On Exit

\_ lnternal/

o hhan ™

msg->linear.x = 0.0;
msg->angular.z = 0.8;

chatter_pub.publish(*msg);
ros::spinOnce();

On Entry

On Exit

\_ lnternal/

:ner_\mmm\

,_x<9 && pos_y<9

after_ms(1000)
client.call(srv)

( 4 W STRAIGHT ) 4 N\ Type

/

v TEST

pos_x=static_cast<long>(sr
pos_y=static_cast<long>(s

On Entry

On Exit

Internal/

ros::NodeHandle*
ros:z:ServiceClient
ros::Publisher ¢
geometry_msgs::Twist * m
ros::NodeHandle*

long p

long
beginner_tutorials::T... s

o ons

°

SGUNAO_DIR/Common
SGUNAO_DIR/posix/gusim
SGUNAO_DIR/posix/gufsm
SGUNAQ_DIR/posix/gufsm
SGUNAO_DIR/posix/gufsm
SHOME/src/MiPal/GUNao/(
SHOME/src/MiPal/GUNao/
SHOME/src/MiPal/GUNao/
SHOME/src/MiPal/GUNao/
SMACHINE_DIR

SMACHINE_DIR/S{BUILD_SL

#include “ros/ros.

#include "geometnr
#include "beginnel
TurtlePosition.h"
#include "ClMacro:!

#include <sstream:




®00 '« RosWallTurttleBot
(DY [(ela|@]| ™ | (5] (=] [ 5 | | | (8] (@] (@

View Zoom Previous Next Page History Rotate Share Edit Markup Magnify Inspector Search

| Global Properties
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 ”
B / \ Variables [+
T N n
/ \ v STRAIGHT / - \ ype ame Comment
v Initial v ros::NodeHandle* n
msg->linear.x = 2.0; =3 = " rosz:ServiceClient client
int argc = 9; ER msg->angular.z = 8.9; ::zg-:rl\nsi;.rxz _8.085. ros::Publisher chatter_pub
static char *xargvl] = { "blindturtlebot” }; 9 9 S5 peeaRy geometry_msgs::Twist * msg
chatter_pub.publish(*msg); A . ros::NodeHandle* pos_n
| ros::init(arge, argy, “blindtu chatter_pub.publish(*msg); e
=) .
S n=new ros::NodeHandle(); ros::spinOnce(); 3 long pos.y
S £ i > i :
pos_n= :NodeHandle() ; after_ms(1000) after_ms(1000) ros::spinOnce(); beginner_tutorials:T... srv
msg= new etry_msgs::Twist(); On Entry On Entry
chatter_pub = n-

e o s Twi " On Exit -
>advertise<geometry_msgs: :Twist>("/turtlel/ On Exit Directory [aale
cmd_vel”, 1000); n Ext

o SGUNAO_DIR/Common
B . iteral \_ Internal / SGUNAO_DIR/posix/gusimplewhiteboard
=2 client = pos_n- after_p#&(1000) \_ 7 SGUNAO_DIR J
: o . : [posix/gufsm/cifsm
>serviceClient<beginner_tutorials::TurtlePo
sition>("turtle_position"); LsesT0k() SGUNAO_DIR/posix/gufsm/cifsm
- 1 pos_x>2 && pos_y>2 &2 pas_x<9 && pos_y<9 zggm? Dlll:;;;oiw:'gxfsmc

N . N /src/MiPal/GUNao/Common
ﬁigiﬁﬂﬁiﬁ'x 1 g.e, . SHOME/src/MiPal/GUNao/ posix/gusimplewhiteboard
e B pp L END A SHOME/src/MiPal/GUNao/ posix/gufsm/cifsm

| g X Aiid L Ve N b b SHOME/src/MiPal/GUNao/ posix/gufsm
8 msg->angular.x = 0.0 v TURNRICHT ’ SMACHINE_DIR
msg->angular.y = 0.8; msg->linear.x = 8.0; 1rpeokd ol SMACHINE_DIR/S{BUILD_SUBDIR}
msg->angular.z = 0.9; msg->angular.z = -2.0; tros::Rk0 has Includes
On Entry . i #include "ros/ros.h"
chatter_pub.publish(msg); ( ~N 7 v TEST N\ #include “geometry_msgs/Twist.h"
On Exit ros::spinonce(); ¥ BACK #include begmnf:tutorlals/
3 i i TurtlePosition.h
8 On Entry msg->linear.x = -1.8; pos_y=static_cast<long> #include "ClMacros.h"
msg->angular.z = 0.8;
Internal On Exit afrers(1000) #include <sstream>
\ j chatter_pub.publish(xmsg); On Entry
after_ms(’
\_ Imerny ros::spinOnce(); O On Exit
g Internal
nterna
i On Exit - .

Inlemal/

r214285
r214285
d+assert
d+assert

-r214285
-r214285



Example 4: Behavior Based
Control / Subsumption
Architecture

-

v Init
On Entry

N

suspend(“FallManager”);

On Exit
Internal
g
( ¥ SUSPENDED

On Entry

)\
~

suspend(”FallManager"”);
suspend(“BatNaotoyes):

On Exit.
Internal

J

[ v GetUp

On Entry

suspend (“BatNaoMoves");
restart(“FallManager");

On Exit

Internal

-

after(l) && na e.fallen(
Is_suspend FalManager”)

( ¥ BAT_MAN_BEHAVIOR

On Entry

Type Name
NAO_State_t nao_state_ptr
NAQ_State nao_state

Comment

Directory

htake

SGUNAO_DIRo/posix/gusimplewhiteboard/typeClassDefs

SGUNAO_DIR/posix/gufsm/cifsm

SGUNAO_DIR/posix/gusimplewhiteboard

SGUNAO_DIR/Common

Includes

resume("BatNaoMoves"):

On Exit

Internal
nao_state = nao_state ptr.get();

N

/

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include “ClMacros.h"

#include "typeClassbels/NAD_State.h"

#include “ClLwhiteboard.h"

using namespace guwhiteboard;

//#define DEBUG

Mechanisms for sub-machine hierarchies and introspection to implement
complex behaviors. FSMs can be suspended, resumed, or restarted, as

well as queried as to whether they are running or not.

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

—
N
o

—



Example 5: RoboCup Game

Controller

T v P v P v e = 7 1 ¥ L .= P Y L B B L P/ L |

9
C ChangeKickoff
= ChangeTeam
E
=
=]
= ' stateCount && nadnstate fallen)
r nao_state.right_foot p...
C nao_state Jeft_fyot, peessedd nao_state.right/foot_press
L Inao_state.left_fdag_pressed() after(1) && is_suspenddgd(“SMFallManager”)
g aftel_ms(20) && Imotion_ Status.get(.isRunning)
[
: @ -
F Inao_state.chest_pressed && ! tate:chest
= | nao_state.left_foot_pressed{() && ! ::8—5 ate.chestipress
C nao_state.right_foot_presse§()
= PenalisedStance
2 after_ms(20) && Imotion| status.get().isRunning0)
E @ after_ms(20) && !
LS motion_status.get{).isR
R gameState =£ Finished &&
= stateCoun
r esx_pressedgao state.chest| = Ready
- = t
edi
C gameState|== Init 0 stateCount && gaf
= && stateCopnt && trustUDP
2
C Finished
__g inished && state
e
- == Playing “"gamestate
= SUSPENDED && trustUDP
C stateCount & stateCoafit
= | Gerlinsuspe s¥FaliManager”)
-3
=

stateCount && nao_state.chest_pressed()

Global

Variables

SMGameController

Play Properties

Type
int
PlayerNumber_t
GCGameState_t
GCGameState
UDPRN_t
int
int
int
bool
bool
GameState

NAO_State_t
enum TeamColours
enum TeamColours

SENSORS_LedsSensors_t
MOTION_Commands_t
MOTION Status_t
WALK_Command _t
WALK_Status_t
'WALK_ControlStatus
float

float

int
PF_ControlStatus_Modes_t
bool

bool

in

Name
myNumber
thePlayerNumberOnTheBack
postGS
smGameState
aUDPReceiverNotificationType
ourScore
newScore
theirScore
penalisedThroughChestButton
isPenalised
gameState
say
nao_state
nao_state_ptr
kickoffTeam
ourTeamColour
leds
motion_ptr
motion_status
walk_post
walk_status
controlstatus
odo_forward
‘odo_start
numberOfPenalties
resetParticleFilter
trustUDP
readyfrominitial
stateCount

The UD...

Directory [+1-]

SHOME/src/MiPal/GUNao/Common

SHOME/src/MiPal/GUNao/ posix/gusimplewhiteboard
SHOME/src/MiPal/GUNao/posix/gufsm/clfsm
SHOME/src/MiPal/GUNao/ posix/gusimplewhiteboard/typeClassDefs

Includes

#include <cstdio>
#include <cmath>

#include “ClMacros.h"

#include "typeClassDefs/GCGameState.h"
#include "typeClassDefs/NAO_State.h"

#include "typeClassDefs/SENSORS_LedsSensors.h"
#include "typeClassDefs/MOTION_Interface.h"
#include "typeClassDefs/WALK_ControlStatus.h"
#include "typeClassDefs/
PARTICLE_TopPositions.h"

#include "CLWhiteboard.h"

#include <dispatch/dispatch.h>

using namespace std;
using namespace guWhiteboard;

Mechanisms for sub-machine hierarchies and introspection to implement
complex behaviors. FSMs can be suspended, resumed, or restarted, as

well as queried as to whether they are running or not.

>
B
(%]
L
©
L
>
b




clfsm: compiled logic-labeled
finite-state machines

SUMMARY

* Complete POSIX and C++11 compliance.
* Opensource catkin ROS package release (mipal.net.au/downloads.php).

* Transitions are labeled by Boolean expressions (not events), facilitating formal verification
and eliminating all need for concerns about event queues.

* Transition labels are arbitrary C++11 Boolean expressions, enabling reasoning into what
may otherwise seem a purely reactive architecture.

* Handling of machines constructed with states that have UML 2.0 (or SCXML) OnEntry,
OnExit, and Internal sections with clear semantics.

* Guaranteed sequential ringlet schedule for the concurrent execution of FSMs (removing
the need for critical sections and synchronization points).

* Efficient execution as the entire arrangement runs as compiled code without thread
switching.

* Being agnostic to communication mechanisms between machines, allowing, for example

use with ROS : services and ROS :messages — however, we recommend the use of
our class-oriented gusimplewhiteboard.

*  Mechanisms for sub-machine hierarchies and introspection to implement complex
behaviors. FSMs can be suspended, resumed, or restarted, as well as queried as to
whether they are running or not.

*  Formal semantics that enables simulation, validation, and formal verification.

* Associated tools such as (MiEditLLFSM and MiCASE) that enable rapid development of
FSM arrangements.

* Tested in 64-bit, 32-bit CPUs, and even 8-bit controllers like the Atmel AVR.

(c) Vlad Estivill-Castro




Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard

* What do they do?

* Finite-State Machines (FSM)
> Logic-labeled FSMs

* Examples

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
N
w

|

Conclusions
* What can | do so you would use them?




gusimplewhiteboard:In
memory 00-messages/classes

* Completely C++11 and POSIX compliant; thus, platform
independent: used on Mac OS X (Mountain Lion), LINUX
13.10, Aldebaran Nao 1.14.3, Webots 7.1, the Raspberry Pi

(www.raspberrypi.org), and Lego NXT.

* Released as a ROS:catkin package (mipal.net.au/
downloads.php).

* Extremely fast performance for add_Message and
get Message, intra-process as well as inter-process.

* Completely 0O0-compliant. The classes that can be used are
not restricted, the full data-structure mechanisms of C++11
are available.

* Very clear semantics that removes lots of issues of
concurrency control.

o
—
+
(%)
©
<
>
E=
(%)
(WH]
©
e
>
e




Middleware - Architecture

* In robotics we need to integrate many pieces of software in
charge of different things

Sensors Tomenty

From =

rT;’u:sﬁng Middleware *

clien

Actuators B e bt o BN
Filtering the sensors , | | Reply | —>|Directed | _J §
] Sl ST request > =
FUSIng the sensors To requesting - N\ e [T olspecific =
client only ‘ N sitver ;
From ®)

servers

Coordinating the actuators
making the motors in an arm control the arm

Perform tasks, make decision, plan, learn

Communicate with others




Software Engineering concerns

Modularity
Integration
Reliability/ Testing

* Development cycle
* Simulations e
* Monitoring i o S %
I hJIIlL al sum e 4 S 2
.':‘;'...':J nreclswn ‘ v‘fjm' ing: 23 &
rot I l ,*—. - >
oy |, Trué’ incaion SYSLE JH JhIUlJl amming =& o
et B0t £ glevele |Il ment ==
andard  paradigm lnlernallnnnlr——r_
conmtentious malnwnanco | —
=, SOMwar
"elur‘ _m .ll.;‘l'lcl . Tlnumeors
§%”m ?‘gu'unu[....,g = e mmm_ ndergranuai; SubsEme
hogh ~"'""'~-.eng|neer|ng
m‘-' contorms G aporoaches [ ]
’;.1 llcenslnn = 26
o fields "m-g = urlunllvn g
2 g 2 em




Whiteboard/Blackboard
architecture

ﬂGENT \

Knowledge Base

Behaviour
. > Control
Whiteboard o
7 L Z
( g
N sensor wrapper actuator wrapper f
©

ojenjoe

sensors

sl

N C %

perception i i‘ action

Reduce the number of APIs

—
N
~N

|




Conceptual cycle

* Similar to a ‘reactive-architecture’

* Similar to a whiteboard architecture

sensor 1
sensor 2

t

h

€

'r sensor 3

w | sensord
w sensor 4

t

|

m

e

Sensor n

O -0T M —IT S

sensor space of the robot

CONTROL AT ITS OWN TIME

Do the right thing by the state
of the world

* Deliberative control
architecture by symbolic-
modeling systems (logics)

* Behavior-base control by
arrangements of FSMs

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
N
(00

|



Modes of communication

* PULL (closer to time-triggered)
* receivers query the whiteboard for the latest from the sender
* own thread for the receiver
* sender just does and add message
* PUSH (closer to event-driven)
* the receivers subscribe a call-back in the whiteboard
* add message by sender spans new threads in the receivers

Receiver
Recejver
Receiver

Sender

Receiver

—/

(©)
-
fras]
%)
(4]
<
E
B
n
(WH]
>
©

—
N
(o}

|



add Message

* Includes
#include "gugenericwhiteboardobject.h”

#include "guwhiteboardtypelist generated.h”

* Declare a handler
Ball Belief t wb ball;

o
=
+
(%]
(4%}
<
>
E=
(%]
(WH]
©
Ly
>
e

* Construct you objects (with the constructor of the OO-class)
Ball Belief a ball(50,30);

* Use the setter to actually post to the whiteboard
wb ball.set(a_ball);




get Message
* Includes

#include "gugenericwhiteboardobject.h”
#include "guwhiteboardtypelist generated.h”

* Declare a handler
Ball Belief t wb ball;

o
-
s
(%]
©
<
=
B
(%]
]
©
i
>
<

* Retrieve your object
Ball Belief ball = wb _ball.get();
// or alternatively: ball = wb _ball();




[llustration of OO facility

4 )

Vv FEEDBACK_CONTROL
On Entry

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);

#endif
WEBOTS_NXT_camera_t camera_data_ptr; ’ DeCIarQ a handler
// the WIDTH is a property of the camera across all channels * Retrieve an obJect d

cameraWidth = camera_data_ptr.get().width() ; i
// second parameter of a Camera Channel is the value of the middle ggiﬁgc”aerty

// delta is the error to the desired state, as a feedback loop control model

delta = camera_data_ptr.get().get_channel(theChannel).secondParameter() -camerawWidth/2;

// set the speeds . .
leftSpeed= speedTolUse —-4=xabs(delta)+4xdelta; ‘ Propertles are ObJECtS

rightSpeed=speedTolUse -4=abs(delta)-4xdelta;

On Exit

Internal

nd

4 N

WV SET_MOTORS_SPEED

On Entry

#ifdef DEBUG

std::string stateName("STATE: "); stateName+=state_name();
print_ptr(stateName);

#endif
WEBOTS_NXT_bridge

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

—
w
N

|



Speed

* Of the order of 50 times faster than ROS

* 2013 Mac Pro, 3 GHz 8-Core Intel Xeon E5, 32 GB memory
1867 MHz DDR3 ECC RAM

* ldentical compiler flags (compiled with catkin_ make)

o
=
+
(%]
(4%}
<
>
E=
(%]
(WH]
©
Ly
>
e

gusimplewhiteboard ROSmacports Hydro
get Message|0.0024 us||ROS:subscribe()|20.14 us
add Message|0.0120 ps||ROS:publish() |20.87 us




One Minute Microwave

* Widely discussed in the literature
of software engineering

* Analogous to the X-Ray machine

Therac-25 radiation machine that
caused harm to patients

(c) Vlad Estivill-Castro

* Important SAFETY feature

OPENING THE DOOR SHALL STOP
THE COOKING



Requirements

Requirements

Description

R1

There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
1s, energize the power-tube) for one minute

R2

If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3

Pushing the button when the door is open has no effect.

R4

Whenever the oven is cooking or the door is open, the light in the oven
will be on.

RS

Opening the door stops the cooking.
and stops the timer

and does not clear the timer

R6

Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7

If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

(c) Vlad Estivill-Castro




One of the FSMs

$ MicrowaveCook.d

name {MicrowaveCook}.

input{timeleft}.

input {doorOpen}.

CO: {1} => ~cook.

Cl: timelLeft => cook. C1 > CO.

C2:

output{b cook, "cook"}.

doorOpen => ~cook. C2 > CI1.

Microwave Engine

cook

_— T~

/' NOT_COOKING \

COOKING |

t

o

post/
Motion:Stop; Motion:On;

J

(@)
-
s
1)
©
i
=
B
0
(WN]
©
e
>
<

—
w
(@)}

|



Embedded systems are
performing several things

* The models is made of several finite state-machines

Behavior-based control

* With a rich language of logic, the modeling aspect is
decomposed

the action /reaction part of the system
the states and transitions of the finite-state machine

the declarative knowledge of the world

the logic system

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

—
w
~N

|



The complete arrangement

.\( Light
A SCTATTA Motor
2 NOT_SHINE_LIGHT doorOpen Il timeLeft 1 SHINE_LIGHT
OnEntry {int light; light=0;} _O_n_Erltr_y_{Ii_grltiL;}_
2 NOT_COOKING \ 'doorOpen &8 timeleft (1 COOKING |

| S (LCIE 1 0 B ——
OnEntry {int motor; motor=0; OnEntry {motor=1;
Y /\ !doorOpen && ! timeLeft \{} ———,Xi —————————— b InEntry fmotor=17
OnExtg |  [OnBExdtG" = S
¢
.\ Be” doorOpen Il ! timeLef
N
( 2 OFF timeLeft 1 ARMED
OnEntry {int sound; sound=0;} | | OnEntry & _ _ . .
oewg 1L o0 Execute in predefine :
0 ) ¢ 2
©
. hedule t; ringlet -
1
—— schedule t; ringlets Z
( ) OnEntry {sound=1;} E
timeout(2000000) = [T - T T T T T T T
OnExit
[onBXtd___ timgLeft Of FS M MI T
N J >
. true S
% T| buttonPushed && !doorOpen && (currentTime<4035) —
1INIT \ ( 2TEST )
OnEntry {int currentTime; extern buttonPushed OnEntry
extern doorOpen; currentTime=0} _ __ _ _ {timeLeft=0<currentTime} | IbuttonPushed
O O
¢ { )
tru
ldoorOpen && timelLeft && timeout(1000000)
DPL ( 4 DECREMENT \ ( 3 ADD_60 \
LOGIC IS COMPILED (L L T s O L R OnEntry {currentTime=60 currs AT
=i ORExig(time ol
{ ¢




That is all folks!




o
=
+
(%]
(4%}
<
>
E=
(%]
(WH]
©
Ly
>
e

Demo video

http://www.youtube.com/watch?v=t4uello67Xk&feature=relmfu




Simulator (embedded system:
Induqtrlal nresg)w

L I S ) [T [T
o s S Pages = D Tos Ohox SUx> SmmiWcens | eeeweesesn

(@)
-
s
1)
©
i
>
5
0
(WN]
©
e
>
<

http://www.youtube.com/watch?v=FpVUSrvLIOc&feature=relmfu




||

On-line debugging and
simulation

N - B

- Real- I omtorl ,Tools
- FSM Designer & D

Real-Time Monitoring and Debugging of
Finite-State Machines running live on the
target System (e.g. the Nao Robot)

o
=
)
(%)
©
O
=
>
5
(%)
(TN}
©
&
>
)




Outline

* Two tools
* clfsm
* mipal gusimplewhiteboard

* What do they do?

* Finite-State Machines (FSM)
> Logic-labeled FSMs

* Examples

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

What have they enabled
» software architectures /middleware
* Model-driven development
* Formal verification

—
S
w

-

Conclusions
* What can | do so you would use them?




Regulate the number of
threads One thread

clfsm SMGameController Safety BatteryMonitor
SMFallManager SMButtonChest SMButtonLeftFoot
SMButtonRightFoot SMRobotPosition SMSayIP SMShutdown

clfsm SMSoundStartStop SMSoundWhistle SMSoundDemo
SMGetUp SMPlayer SMBallFollower SMKicker SM
SMBallSeeker SMReadyFromInitial SMReadyFrom?
SMHeadBallTracker SMWalkScanner SMSeeker Co
SMHeadScannerGoal SMHeadGoalTracker SMGetClc —-ociiiehiiicle
SMSet SMFindGoalOnSpot SMGoalieSaver SMFindC
SMLeapController SMTeleoperationController
SMTeleoperation SMTeleoperationHe
StopMotionRecorder SMYouCannotCat

(c) Vlad Estivill-Castro

: .
clfsm gukalmanfilter Third threa

clfsm guUDPreceiver Fourth thread

—
I
I

-



Very quick development of
behaviors

* Very rapidly produces
results

* Very rapidly we can trace
the observed behavior to
the code

* Very rapidly we have
building blocks that add
sophistication

All the behaviors in one go

o
—
s
(%]
@©
<
=
5
(%]
]
©
&
>
<




The two paradigms

* Event-triggered * Time-triggered
optimistic pessimistic
best-case, response regular response time
time
can’t handle event- predictable g
showers scalable :
not predictable -

not scalable
repeat the verification

Kopetz, H.: “Should Responsive Systems be Event-Triggered or » J
Time- Triggered?” N

|IEICE Transactions on Information and Systems 76(11), 1325
(November 1993)




Check out
clfsm

Let us know what you think

o
=
+
(%]
(4]
<
=
E=
(%]
(WH]
©
L
>
e

—
I
~

-




0J1SeD-|[IAnST A O




Conceptual cycle

* Similar to a ‘reactive-architecture’

under one CPU
rate for the sensors

* Similar to a whiteboard architecture

DEO —_— D> ~+

M3—+

Sensor n

O -0T M —IT S

sensory space of the robot

CONTROL AT ITS OWN TIME

Do the right thing by the state
of the world

* Deliberative control
architecture by logics

* Behavior-base control
by vectors of FSMs

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
S
(o)

-



Conceptual cycle

* Similar to a ‘reactive-architecture’
* Similar to a whiteboard architecture

DEO —_— D> ~+

M3—+

Sensor n

QO 0T M —ITS

sensory space of the robot

under one CPU
rate for the sensors

timet,

CONTROL AT ITS OWN TIME

Do the right thing by the state
of the world

* Deliberative control
architecture by logics

* Behavior-base control
by vectors of FSMs

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
U
o

|



Conceptual cycle

* Similar to a ‘reactive-architecture’
* Similar to a whiteboard architecture

DEO —_— D> ~+

M3—+

Sensor n

Q S»OL M — S

sensor space of the robot
and memory is FINITE

under one CPU
rate for the sensors

time t;

CONTROL AT ITS OWN TIME

Do the right thing by the state
of the world

* Deliberative control
architecture by logics

* Behavior-base control
by vectors of FSMs

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
92
=

—



Conceptual cycle

* Similar to a ‘reactive-architecture’
* Similar to a whiteboard architecture

sensor 1

sensor 2
sensor 3
sensor 4

DEO —_— D> ~+

M3—+

Sensor n

-2

o =0v0L MO —:

sensory space of the robot
and memory is FINITE

under one CPU
rate for the sensors

time t,

CONTROL AT ITS OWN TIME

Do the right thing by the state
of the world

FULL REACTIVE
DO THE RIGHT THING
FOR MEMORY AND
SENSOR SPACE

* Deliberative control
architecture by logics

* Behavior-base control
by vectors of FSMs

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
9]
N

|



Conceptual cycle

* Similar to a ‘reactive-architecture’

under several CPU
rate for the sensors

* Similar to a whiteboard architecture

CONTROL AT ITS OWN TIME

Do the right thing by the state of

the world

FULL REACTIVE
DO THE RIGHT THING
FOR MEMORY AND
SENSOR SPACE

O SW0L DT —0 =

O SWOL DT —0 S

sensor C

sensor C

sensor n

CONTROL AT ITS OWN TIME

Do the right thing by the state of
the world

FULL REACTIVE
DO THE RIGHT THING
FOR MEMORY AND
SENSOR SPACE

o
=
+
(%]
©
<
=
5
(%]
(WH]
©
L
>
e

—
(9]
w

|



