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3Robots in Human
Environments

Implications for:

Software Engineering for Robots
Reasoning

Human Computer Interaction
Agent technology / Game Theory
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How do you describe the
behavior as an everyday
person?
(to your robot / companion)

 There is a declarative part
 a context, a description

 ontology (?) knowledge representation?
 If formal (unambiguous), needs a logic

 There is a state - transition - action part
 Formally, an algorithm in a formal model of

computation
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Specifying a behavior

 It should be natural to the human
 For the declarative parts, mechanisms

used by humans should be provided
 common sense reasoning
 non-monotonic logic

 Mechanism should be simple to learn
 Formal to remove ambiguity
 Implementable (interpreter/compiler)
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Illustration
 Naturally to develop rules systems where the

new rules redefine exception to the previous
ones

 3 laws of robotics
1. A robot may not harm a human
2. A robot must obey a human unless it

contradict law 1
3. A robot must protect itself unless

contradicts rule 1 or 2
 Ripple down rules

 Rules are defined and new rules are
subsequently added to revise the cases not
covered by the more general rules

 A tree that is a hierarchy of rules
 No formal reasoning
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Proposal for engineering the
behavior

 Using visual descriptions of the behaviour that
incorporate formal logic

 Engineers use diagrams to model artefacts.
 Software Engineering has traditionally used

diagrams to convey characteristics and
descriptions of software

 High-level tools
 Observations:

 Specifying behaviour unambiguously is
difficult

 Interpret human descriptions of behaviour is
also difficult
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Requirement Engineering

 CASE (Computer Assisted Software
Engineering)
 graphical models
 code generation

 Bottom-up approach
 Elude the very large syntax and semantics

of OMG modeling (standard) languages
 for example : UML [2.0]
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Requirement Engineering
 Minimize software faults

 disambiguate requirements
 completeness
 consistency

 validate requirements
 correctness

 model / simulate requirements
 platform independence

 traceability of evolution / change in requirements
 communicate requirements
 implement requirements (automation)
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Modelling behaviours
• Computer Assisted Software Engineering enables

the manipulation of modelling diagrams and the
generation of code from the models.

• We introduce diagrams that use logic to describe
behaviour.

• Our proposal extends techniques like Finite State
Machines, Petri Nets Object Models for Object
Orientation, and Behaviour Trees.

• We model the relationship between several inputs
as asserted conditions about the environment that
an agent can reason about (using logics) and
resolve with respect to knowledge of the
environment.
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Formal Logics (declarative)
For the description of the behaviour
Advantages
1. Descriptions are unambiguous

• Descriptions have specific meanings.
2. Ease of description - descriptive

• Focus is on what the behaviour does, not
how it happens

3. Can be translated to implementations in imperative
languages like C++, Java

4. Understandable by humans
• Can be the result of a knowledge

engineering exercise
• Usually humans describe exceptions and

laws governing many situations in this way
Disadvantages
1. Can lead to undecidable settings or other difficulties for

implementation, like very large and/or inefficient programs
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Illustrating state diagrams

 Exclusivity
ci∧cj = false ∀ i≠ j
 Exhaustivity

∨i=1
n

 ci = true

s1 sic1=eventu
s1 sjc2=eventv

si spct=eventx
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State diagrams (action)

 Correspond naturally to
the notion of state
machine

 Already very common
in many human-
computer interfaces
 elevators/mobile

phones/ washing
machines

 Formal semantics
(formal mathematical
object)
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State diagrams (action)
 Widely used in Software Engineering

 OMT, then UML, Shlaer-Mellor

 Widely successful tool in industry
 StateWorks, executableUML
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State Machines

 Some extension and equivalences to
other formal models

 Multi-threaded State Machines
 Petri Nets
 Distributed computation
 Team automata
 Security formalisms (verification)
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Convert State Diagram
into Behaviour Tree

 Draw down by
breadth-first search

 Already visited nodes
are cloned but not
explored again
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Convert a node in the tree to
a module in Plausible Logic

1. name(Node).
2. type State_Type(S_0, S_1,...,S_k).
3. ∨{State(S_0),…,State(S_k)}.
4. ∨{¬State(S_i),¬State(S_j)}. (∀ i ≠ j)
5. input{“e_i”}. (for i=1,…,k}
6. Default: ⇒ State(S_0).
7. Switch_S_0_S_i:{“e_i”} ⇒ State(S_i).

(for i=1,…,k)
8. Switch_S_0_S_i > Default. (for i=1,…,k)



©  V. Estivill-Castro 18

Using the priority relation

1. Switch_S_0_S_i:{“e_u”} ⇒ State(S_i).
2. Switch_S_0_S_i > Default.
3. Switch_S_0_S_j:{“e_v”} ⇒ State(S_j).
4. Switch_S_0_S_j > Default.

5. Switch_S_0_S_p:{“e_v∧e_u”} ⇒ State(S_p).

6. Switch_S_0_S_p > Default.
7. Switch_S_0_S_p > Switch_S_0_S_i.
8. Switch_S_0_S_p > Switch_S_0_S_i.

eu

ev

eu∧ev

S_0
S_i

S_j

S_p
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A logic for looking after
the lady
1.  Usually there is no reason for alarm
2. The absence of owner for a long time is reason for alarm (this

takes precedence over rule 1)
3.  Lying usually results from a fall
4. A fall is usually a reason for alarm (this takes precedence over

rule 1)
5. Being on bed is not a fall (this takes precedence over rule 4)
6. Lying for a long time means owner is not getting up.
7. Not getting up is a reason for alarm (this takes precedence

over rule 1)
8. If it is night, it is fine not to get up (this takes precedence over

rule 7)
9. If there is a stranger looming over the lady, it is reason for an

alarm (takes precedence over rule 1)
10.Owner can’t be absent while on bed, or lying or lying for a long

time.
11.Owner can’t be lying for a long time without lying for a short

time.
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Diagrams to illustrate rule
relations
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Prototype demonstrated at
RoboCup@Home 2007

ALARM

It’s cool
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A diagram for a poker player



©  V. Estivill-Castro 23

Code generated (example)
/* This is code Generated by the DPLGenerator
** This program was made by Mark Johnson 2008 (MiPAL)
** File Opponent.d
*/

name{Opponent}.

type Opponent(x<-Opponent_Type).

type Opponent_Type = {Loose_Passive, Loose_Aggressive, Tight_Passive, Tight_Aggressive}.

\/{Opponent(Loose_Passive), Opponent(Loose_Aggressive), Opponent(Tight_Passive), Opponent(Tight_Aggressive)}.

\/{~Opponent(Loose_Passive),~Opponent(Loose_Aggressive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Tight_Passive),~Opponent(Tight_Aggressive)}.

input{"aggressiveness_GT_aggressiveness_Threshold"}.
input{"tightness_GT_tightness_Threshold"}.

Default_Opponent: {}=>Opponent(Loose_Passive).

Switch_aggressiveness_GT_aggressiveness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold"} => Opponent(Loose_Aggressive).
Switch_aggressiveness_GT_aggressiveness_Threshold > Default_Opponent.

Switch_tightness_GT_tightness_Threshold: {"tightness_GT_tightness_Threshold"} => Opponent(Tight_Passive).
Switch_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold",
"tightness_GT_tightness_Threshold"} => Opponent(Tight_Aggressive).

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_tightness_GT_tightness_Threshold.
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_aggressiveness_GT_aggressiveness_Threshold.
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Earlier Process
to
Embed Design
into the
AIBO Robot

DESIGN

Java
simulator

C++
simulator

C++
for AIBO

Haskel implementation
of non-monotonic logic

Competition
statistics

DCL
code

Java
code

C++ glue
code
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Systems interacting with
humans
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A classical example

 The One-Minute Microwave Oven
 literature approach
 behavior specification of all objects of a

class
 Shlaer-Mellor

 StateWorks
 Behavior Trees
 PetriNets
 SCXML - State Chart XML: State Machine

Notation for Control Abstraction



©  V. Estivill-Castro 28

Requirements
 (One-Minute Microwave Oven)

Requirements Description

R1 There  is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
is, energize the power-tube) for one minute

R2 If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the oven
will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

and does not clear the timerand stops the timer
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The DPL+State_Machine
approach

 Step 1: Consider writing the script of music for
an orchestra. Write individual scripts and place
together all actuators that behave with the
same actions for the same cues

 Example: The control of the tube (energizing),
the fan and the spinning plate
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Step 2: Describe the conditions
that result in the need to change
state
% MicrowaveCook.d

name{MicrowaveCook}.

input{timeLeft}.

input{doorOpen}.

C0: {}       => ~cook.

C1: timeLeft =>  cook. C1 > C0.

C2: doorOpen => ~cook. C2 > C1.

output{b cook, "cook"}.

Action:
Posting a message
to the whiteboard
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Step 1 (again): Analyze
another actuator

 Illustration: The light
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Step 2 (again): Describe the
conditions that result in the
need to change state
% MicrowaveLight.d

name{MicrowaveLight}.

input{timeLeft}.

input{doorOpen}.

L0: {}       => ~lightOn.

L1: timeLeft =>  lightOn. L1 > L0.

L2: doorOpen =>  lightOn. L2 > L0.

output{b lightOn, "lightOn"}.
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Step 1 (again): Analyze
another actuator

 Illustration: The button
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Step 2 (again): Describe the
conditions that result in the need
to change state
% MicrowaveButton.d

name{MicrowaveButton}.

input{doorOpen}.

input{buttonPushed}.

CB0: {}           => ~add.

CB1: buttonPushed =>  add. CB1 > CB0.

CB2: doorOpen     => ~add. CB2 > CB1.

output{b add, "add"}.
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Step 1 (again): Analyze
another actuator

 Illustration: The bell
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Step 2 (again): Describe the
conditions that result in the
need to change state

No need for a logic: timeLeft
- posted by another module
- do not require a proof



Step 1 (again): Analyze
another actuator
 Illustration: The timer



The simple C++ code
incrementTimer()

currentCookTime+=60;

decrementTimer()
If (currentCookTime>0)
   currentCookTime--;

postTimeValue()
if (currentCookTime<=0)

post “~timeLeft”;
else

post “timeLeft”;
sleep(1);
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That is all folks!

 Insert Image from Warner Brothers and
URL for Video in Utube



www.youtube.com/watch?v=iEkCHqSfMco
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http://www.youtube.com/watch?v=Dm3SP3q9_VE
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StateWorks
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Petri Nets
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Behavior Trees

 Model
Behavior Tree
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Behavior Trees
 Design Behavior Tree



Comparison

 Far simpler
 Less states that

 StateWorks,
 Behavior Trees

 (less boxes and arrows)

 Far less crossings that Petri nets

 Behavior Trees  miss the alarm
(beeper).
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The interaction between
modules
 Shows up in the behavior tree.
 But does not happen in BECCIE



Module interaction
diagrams
 Perhaps of a global behavior tree
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The Software Architecture

For implementation



©  V. Estivill-Castro 50

Software Architecture
 Agents / Robots

Reactive
Systems

Reasoning/ Planning
Systems

“Soft-Computing/
Computational Intelligence”

Symbolic AI

Hybrid System
Systems
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A hybrid system
 The initial progress on logic and

reasoning within AI has largely been
discarded from mobile robotics in favour
of reactive architectures

 We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

 Plausible logic is the only non-monotonic
logic with an algorithm that detects loops
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Hybrid System for Intelligent
and Integrated System
 Reactive System

 State Machine

 Reasoning
• Non-Monotonic

Logic

S1 S2
1. name(Node).
2. type State_Type(S_0,..,S_k).

3. ∨{State(S_0),…,State(S_k)}.
4. ∨{¬State(S_i), ¬State(S_j)}.

(∀ i ≠ j)
5. input{“e_i”}. (for i=1,…,k}

6. Default: ⇒ State(S_0).

7. Switch_S_0_S_i:{“e_i”} ⇒
State(S_i). (for i=1,…,k)

8. Switch_S_0_S_i > Default.

event
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Reasoning
 Deriving conclusions from facts

 Apparently, a fundamental
characteristic of intelligence

 An expected aspect of intelligent
systems

 Withdrawing conclusions in the light
of new evidence is a capability
usually referred to as non-
monotonic reasoning
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Non-Monotonic Reasoning

 A form of Common Sense
 Retract previous

conclusions in the light of
new evidence

1. Planes usually leave on time.
2. My flight leaves at 11:00 am.
3. Therefore, I should be at the airport at 9:00am.
4. My flight is cancelled. 
5. Makes no sense to take actions for going to the

airport early.
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 Integrate
 Vision
 Sound

recognition
 Motion Control
 Reasoning

Result: Robotic Poker Player

 Environment
• Complex
• Interactive
• Unpredictable
• Competitive
• Incomplete

Information
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Behaviour Design
 Software Engineering

 visual models of behaviour

STATE STATE

event

 Behaviour Specification
• by humans

 Human-Robot Interaction
Human-Robot
Collaboration

statement from non-monotonic logic



©  V. Estivill-Castro 57

Previous Work
--- Software architectures for robotics

 Action - Sensor Model [Wooldridge 2002]
 Solution for control problem

 Golog [Vassos et al 2007]
 Aim for “Cognitive Robotics”

 Knowledge Middleware [Heintz et al 2007]
 Bridge low level sensor knowledge

 Robotic Architectures [Liu 2004]
 Generic Robot [Kim et al 2005]

 Solution to platform dependence
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Global Architecture
 Framework = Software Engineering

 Solves
 Module Production / Workload problems
 Software Development Methodology Problem

 Whiteboard (Blackboard [Hayes-Roth 1988])
 Solves

 Knowledge representation problem
 (facts with timestamp and author)

 Module Interaction Problem
 Domain Knowledge

 Logics
 Belief revision / knowledge elicitation

 Solves
 Validation / verification /specification
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Our Architecture
 Solution to Control Problem

External States

Behaviours (and sub-behaviours)

Actions

exclusive

decomposable

priorities
asynchronous
associated with
actuators
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 Robotic Soccer
• Complex

behaviour

Behaviour Illustration
 Robotic Soccer

 Simple Behaviour

 Sub-behavior
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Engineering the behavior

 Using visual descriptions of the
behaviour that incorporate formal logic

 Engineers use diagrams to model
artefacts.

 Software Engineering has traditionally
used diagrams to convey characteristics
and descriptions of software
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ATTACKER

ball_visible

ball_not_visible

KICK_TO
DO:find_opposite goal
and head_kick()

BALL_FINDER

BALL_CHASER

d
o
n
e

g
o
t
_
i
t

GO_TO_
POSITION

a
r
r
i
v
e
d
_
h
o
m
e

m
a
x
_
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_v
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le

recently_seen && chest_triggered



©  V. Estivill-Castro 63

AGENT

Whiteboard

Knowledge Base
se

ns
or

s sensor wrapper

actuators

actuator wrapper

ENVIRONMENT

perception action

Behaviour
Control

Reasoning
 Engine

State Machine
Interpreter
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Wrapping Sensors and
Actuators

 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 belief of
observing the ball

behaviour
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Wrapping Sensors and
Actuators

 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 contradictory 
information
about the ball

no behaviour
sensor 2

Alternative
Example: Seeing both goals
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Our approach

Vision and
Object Recognition

Sensor fusion

Consistency
 Module

Non-monotonic
reasoning
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Our approach

Consistency
 Module

Non-monotonic logic that combines facts known
about the environment with what is reported

by the sensors
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Wrapping Sensors and
Actuators

 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 useful 
information
about the ball

behaviour
sensor 2

Reasoning
 Engine
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Wrapping Sensors and
Actuators
 Fusion in time

Whiteboard

sensor 1 useful 
information
about the ball

behavioursensor 1

Reasoning
 Engine

time t1

time t2
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Independent and
 Asynchronous

 Reasoning Engine

Actuators

Sensors

Control

Reasoning Engine
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Reasoning Engine
 Template Method

1. All facts are labelled unknown

2. Extract facts from whiteboard

3. Execute predicates that are more efficient in
imperative languages

4. Run the necessary queries /proofs on DPL



Interpret a behavior
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STATE_ID_1
Do:
ACTIVITY_1

STATE_ID_2
Do:
ACTIVITY_2

logic_output_1/action_1

logic_output_2/action_2

logic_output_3/action_3
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Behavior Interpreter (version 1)
void fsmMachine :: execute ()
{ vector <fsmState*>::iterator it;

it=theStates.begin();
fsmState* current = (*it);
int currentID = current -> getID();
cerr << Initial State is State Number " << current->getID()<< "\n”;

while (1) // run for ever
{// Evaluate labels of transitions going out of current state
 // and may change state
p_fsmTransition p_itTransitions;
p_itTransitions = current->theFirstTransition();
bool transitionFired = false;

      while ((!transitionFired) &&  (NULL!= p_itTransitions))
{cout << "Evaluate : " <<( (p_itTransitions)->getExpression() ) -> getWhatToEvaluate() << "\n";
 cout << "Does this expression evaluate to true (Y/N)?\n";
 char response;     cin >> response;
 if ('Y'== response) // we need to execute the transition
  { current= p_itTransitions->getTarget();

currentID=current->getID();
// break out
transitionFired = true;

   }
  else // advance to next transition
    {  p_itTransitions = current ->theNextTransition();
    }
} // or != NULL

// send message to Actuators of My Activity
// by posting to whitebaord
cout  << " After evalaution the state is : " <<find(current->getID())->getID() << "\n";
cout << " We are " << ( current->getActivity() )->getWhatToDo() << "\n";
}

}

Get initial state

Always
Get first transition

Evaluate

Move to new state
and break if true

Do activity
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Summary
 I hope to collaborate with your expertise
 A focused project

 Humanoid that interactively plays team
games of incomplete information with
humans

 Enables research on intelligent/smart devices
 We can postulate the use of intelligent capabilities to

enhance the life of humans

 care / assistance / education / tele-
presence

 Keep in mind it is more important to improve the
condition of human living than to imitate it.
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