Vliad Estivill-Castro

School of Information
and Communication
Technology

Institute for Intelligent
and Integrated Systems
(many collaborators)

© V. Estivill-Castro 1

Modelling

for

Behaviour Requirements

Automatic Interpretation,
Simulation and
Deployment

David Billington,
Vladimir Estivill-Castro,
René Hexel, and
Andrew Rock

Robots in Human
Environments

Software Engineering for Robots
Reasoning

Human Computer Interaction
Agent technology / Game Theory

How do you describe the
behavior as an everyday
person?

(to your robot / companion)

e There is a declarative part
e a context, a description
ontology (?) knowledge representation?
e If formal (unambiguous), needs a logic
e There is a state - transition - action part

e Formally, an algorithm in a formal model of
computation

© V. Estivill-Castro 4

Specifying a behavior

e |t should be natural to the human

e For the declarative parts, mechanisms
used by humans should be provided

common sense reasoning
non-monotonic logic

e Mechanism should be simple to learn
e Formal to remove ambiguity
e Implementable (interpreter/compiler)

© V. Estivill-Castro

Hlustration

e Naturally to develop rules systems where the
new rules redefine exception to the previous
ones

° 3 laws of robotics

A robot may not harm a human

A robot must obey a human unless it
contradict law 1

A robot must protect itself unless
contradicts rule 1 or 2

o Ripple down rules

Rules are defined and new rules are
subsequently added to revise the cases not
covered by the more general rules

A tree that is a hierarchy of rules
No formal reasoning

© V. Estivill-Castro

Proposal for engineering the
behavior

e Using visual descriptions of the behaviour that
incorporate formal logic

e Engineers use diagrams to model artefacts.

e Software Engineering has traditionally used
diagrams to convey characteristics and
descriptions of software

e High-level tools
e Observations:

e Specifying behaviour unambiguously is
difficult

e Interpret human descriptions of behaviour is
also difficult

© V. Estivill-Castro 7

Requirement Engineering

e CASE (Computer Assisted Software
Engineering)
e graphical models
e code generation

e Bottom-up approach

e Elude the very large syntax and semantics
of OMG modeling (standard) languages

e for example : UML [2.0]

© V. Estivill-Castro 8

Requirement Engineering

e Minimize software faults

e disambiguate requirements
completeness
consistency

e Vvalidate requirements
correctness

e model / simulate requirements
platform independence

e traceability of evolution / change in requirements

e communicate requirements

e implement requirements (automation)

© V. Estivill-Castro 9

Modelling behaviours

Computer Assisted Software Engineering enables
the manipulation of modelling diagrams and the
generation of code from the models.

We introduce diagrams that use logic to describe
behaviour.

Our proposal extends techniques like Finite State
Machines, Petri Nets Object Models for Object
Orientation, and Behaviour Trees.

We model the relationship between several inputs
as asserted conditions about the environment that
an agent can reason about (using logics) and
resolve with respect to knowledge of the
environment.

© V. Estivill-Castro 10

Formal Logics (declarative)

For the description of the behaviour
Advantages
1. Descriptions are unambiguous
. Descriptions have specific meanings.
2. Ease of description - descriptive

. Focus is on what the behaviour does, not
how it happens
3. Can be translated to implementations in imperative

languages like C++, Java
4. Understandable by humans

. Can be the result of a knowledge
engineering exercise
. Usually humans describe exceptions and

laws governing many situations in this way
Disadvantages
1. Can lead to undecidable settings or other difficulties for
implementation, like very large and/or inefficient programs

© V. Estivill-Castro 11

lllustrating state diagrams
ﬂALL_CHASER \ ﬂBALL_FINDER \

0.5 sec passed
—

ball not visible

>
follow search
Do: walk Do:spin

ball visible 2 sec passed

- Y, §

S; | ¢;=event, S;

/ look_under_head \
f Do:walk back

look_around
Do:spin

e EXxclusivity
ciac; = false V i#j

S; | c¢,=eveni, S

e Exhaustivity

V ._/c;= true

S; c,=event, S

© V. Estivill-Castro 12

State diagrams (action)

e Correspond naturally to
the notion of state
machine

e Already very common
IN many human-
computer interfaces

e elevators/mobile
phones/ washing
machines

e Formal semantics
(formal mathematical
object)

© V. Estivill-Castro

13

State diagrams (action)

SALLY SHLAER ~ STEPHEN J. MELLOR

e Widely used in Software Engineering ORJECT
e OMT, then UML, Shlaer-Mellor LIFECYCLES

Modeling the World in States

OBJECT-ORIENTED ~ *=****
MODELING g
AND

DESIGN

PN SN e

e Widely successful tool in industry

e StateWorks, executableUML _ et sl e
Jp— Model Driven Architecture
o with Executable UML™
Modeling Software . .
with Finite State m '
Machines PRACTICAL
A Pracoal lopromch UML STATECHARTS

IN C"'C++, Second Edition

Event-Driven Programming for
Embedded Systems

© V. Estivill-Castro 14

State Machines

e Some extension and equivalences to
other formal models

e Multi-threaded State Machines

e Petri Nets

e Distributed computation

e Team automata

e Security formalisms (verification)

© V. Estivill-Castro

15

Convert State Diagram
into Behaviour Tree

@f@_"\.
ON
Q>\ e Draw down by
@ breadth-first search
\‘ e Already visited nodes
N\

are cloned but not
explored again

© V. Estivill-Castro 16

Convert a node in the tree to
a module in Plausible Logic

. 1. name () .
\. 2. type State Type (r S 1,004,) .

. 3. Vv{State() ,..., State () }.
t. v{-State(S i),-State(S J)}. (V i = 7)

() - input{e_i”}. (for i=1,.,k]
6. Default: = State() .
7. Switch B :{%e 1”7} = State() .

(for 1=1,..,k)

. Switch > Default. (for 1=1, .., k)

© V. Estivill-Castro 17

1:{%e u”} = State(S 1i).
> Default.
j:{%e v’} = State(S 3Jj).

Switch S 0 S 7

Switch S 0 S p:

Switch S 0 S p

Switch S O S p

Switch S O S p

> Default.

{“e vAe u”} = State(S p).
> Default.
> Switch S 0 S 1i.

> Switch S 0 S 1i.

© V. Estivill-Castro 18

A logic for looking after
the lady

-_—

9.

Usually there is no reason for alarm

The absence of owner for a long time is reason for alarm (this
takes precedence over rule 1)

Lying usually results from a fall

A fall is usually a reason for alarm (this takes precedence over
rule 1)

Being on bed is not a fall (this takes precedence over rule 4)
Lying for a long time means owner is not getting up.

Not getting up is a reason for alarm (this takes precedence
over rule 1)

_If it is night, it is fine not to get up (this takes precedence over

rule 7)

If there is a stranger looming over the lady, it is reason for an
alarm (takes precedence over rule 1)

10.0wner can’t be absent while on bed, or lying or lying for a long

time.

11.0wner can’t be lying for a long time without lying for a short

time.
© V. Estivill-Castro 19

Diagrams to illustrate rule
relations

{

nighttime

looming

notGettingUp)

lyingLong

onBed

absence \

© V. Estivill-Castro 20

Prototype demonstrated at
RoboCup@Home 2007

© V. Estivill-Castro 21

File Zoom Out Zoom In

“random_GT_BluffRatio”,

Opponent(Tight_Passive)

Opponent(Loose_Passive)

Opponent{Tight_Aggressive)

“handStrength_GT_40", equal_Game_State{Preflop,s)

“handStrength_GT_50", equal_Game_State{Preflop, s)

/ “handStrength_GT_40"
“handStrength_GT_50"
"handStrength_GT_15™
“handStrength_GT_30"
“handStrenigth_GT_40", equal_Game_State{Preflop, s|

"handStrength_GT_50", equal_Game_State{Preflop,s)

“tightness_GT._tightness_Threshold™ “aggressiveness_GT_3ggressiveness_Threshold”

“ “aggressiveness_GT_aggressiveness_Threshold”, "tightness_GT_tightness_Threshold™

Personality_Decision

Super_Tight_Aggressive
Bluffer
Tight_Aggressive

"handStrength... | v] >

"handStrengt... | - |

\ Add Defeat |

"handStrength_GT_50", equal_Game_State(Pr...
"handStrength_GT_40", equal_Game_State(Pr...
"handStrength_GT_30" > "handStrength_GT_...

b || |

New Type ‘ Tight_Aggressive

’ New External Condition ‘

New State] Raise

E

[([JPanel (Java 2 Platf...][4 [Debian -- The Univ...][?J NetBeans IDE 6.0.1][@ Font (Java 2 Platfor...]ng Java

© V. Estivill-Castro

L1

22

Code generated (example)

/* This is code Generated by the DPLGenerator

** This program was made by Mark Johnson 2008 (MiPAL)
** File Opponent.d

*/

name{Opponent}.

type Opponent(x<-Opponent_Type).

type Opponent_Type = {Loose_Passive, Loose_Aggressive, Tight_Passive, Tight_Aggressive}.
\/{Opponent(Loose_Passive), Opponent(Loose_Aggressive), Opponent(Tight_Passive), Opponent(Tight_Aggressive)}.

\/{~Opponent(Loose_Passive),~Opponent(Loose_Aggressive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Tight_Passive),~Opponent(Tight_Aggressive)}.

input{"aggressiveness_GT_aggressiveness_Threshold"}.
input{"tightness_GT_tightness_Threshold"}.

Default_Opponent: {}=>Opponent(Loose_Passive).

Switch_aggressiveness_GT_aggressiveness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold"} => Opponent(Loose_Aggressive).
Switch_aggressiveness_GT_aggressiveness_Threshold > Default_Opponent.

Switch_tightness_GT_tightness_Threshold: {"tightness_GT_tightness_Threshold"} => Opponent(Tight_Passive).
Switch_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold",
"tightness_GT_tightness_Threshold"} => Opponent(Tight_Aggressive).

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_tightness_GT_tightness_Threshold.
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_aggressiveness_GT_aggressiveness_Threshold.

© V. Estivill-Castro 23

L
/

Vg

Earlier Process |
to N\

Embed Design
into the

Y 4
AIBO Robot
Py N .

askel implementation Java
of non-monotonic logilc gimulator

jus)

statistics
C++ C++
simulator for AIBO

‘‘‘‘‘‘

© V. Estivill-Castro

© V. Estivill-Castro 25

© V. Estivill-Castro

A classical example

e The One-Minute Microwave Oven
e literature approach

e behavior specification of all objects of a
class

Shlaer-Mellor
o StateWorks
e Behavior Trees
e PetriNets

e SCXML - State Chart XML: State Machine
Notation for Control Abstraction

© V. Estivill-Castro 27

Requirements
(One-Minute Microwave Oven)

Requirements

Description

R1

There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
is, energize the power-tube) for one minute

R2

If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3

Pushing the button when the door is open has no effect.

R4

Whenever the oven is cooking or the door is open, the light in the oven
will be on.

RS

Opening the door stops the cooking.

and stops the timer and does not clear the timer

R6

Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7

If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

© V. Estivill-Castro 28

The DPL+State _Machine
approach

e Step 1: Consider writing the script of music for
an orchestra. Write individual scripts and place
together all actuators that behave with the
same actions for the same cues

e Example: The control of the tube (energizing),
the fan and the spinning plate

Microwave Engine
_—— cook —

N _— N
C NOT_COOKING | (COOKING \\
post/ ’ post/
Motion:Stop; Motion:On;
| § J

© V. Estivill-Castro 29

Step 2: Describe the conditions
that result in the need to change
state

[e]

$ MicrowaveCook.d

input{timeLeft}. \] — i T TT—
input { doorOpen } . (NOT_COOKING w ‘ COOKING w
L post/ J t post/
Motion:Stop; Motion:On;
CO: {} => ~cook. ~cook

Cl: timeleft => cook. Cl1 > CO,
C2: doorOpen => ~cook. C2 > CI1.

Action:
output{b cook, "cook"}. Posting a message
to the whiteboard

© V. Estivill-Castro 30

Step 1 (again): Analyze
another actuator

e lllustration: The light

Microwave Light

/ lightOn
(LIGHT_OFF w (LIGHT_ON \
Lpost/ Lights:Off;J post/ Lights: OnJ

k NllghtM

© V. Estivill-Castro 31

Step 2 (again): Describe the
conditions that result in the
need to change state

% MicrowaveLight.d

name {MicrowaveLight}. ‘\Microwave Light

input {timeLeft} L
1npu lmeLe : (LIGHT_OFF \ f LIGHT_ON
input { doorOpen} . Lpost/ Lights:Off;J post/ Lights:On;

~lightOn
LO: {} => ~1ightOn.

Ll: timeLeft => 1ightOn. L1 > LO.
L2: doorOpen => 1ightOn. L2 > 1LO.

output{b 1lightOn, "lightOn"}.

© V. Estivill-Castro 32

Step 1 (again): Analyze
another actuator

e lllustration: The button

Microwave Button
add \

[DISABLED | (' ENABLED

post/ post/
Microwave :DISABLED Microwave : ENABLED

|/

© V. Estivill-Castro 33

Step 2 (again): Describe the
conditions that result in the need
to change state

% MicrowaveButton.d

name {MicrowaveButton}. .
Microwave Button

input {doorOpen}. add
input {buttonPushed}. w

- _

A/ DISABLED T l ENABLED T
post/ post/

CBO: {} > ~add. Microwave : DISABLED Microwave : ENABLED

CB1l: buttonPushed
CB2: doorOpen

> add. CB1 > CBO.
~add
> ~add. CB2 > CBl.

output{b add, "add"}.

© V. Estivill-Castro 34

Step 1 (again): Analyze
another actuator

e lllustration: The bell

‘\Microwave Bell
timeLeft .
[BELL_OFF BELL_ARMEDJ

/

(BELL_RINGING W ~timeleft

post/ Sound:On; J/

© V. Estivill-Castro 35

Step 2 (again): Describe the
conditions that result in the
need to change state

No need for a logic: timeLeft
- posted by another module
- do not require a proof

‘\Microwave Bell
N —— timelLeft

BELEOEE LBELL_ARMED]

/

[BELL_RINGING w ~timeleft
post/ Sound:On;

© V. Estivill-Castro 36

Step 1 (again): Analyze
another actuator

e lllustration: The timer

‘gurrentTime; M icrowave Timer
/currentTime=0; add
N
/ NOTIFY (ADD_GO/ w
e OnEntry
) ACt'v't_Y/ t currentTime+=60; J
if (currentTime<=0)

post ("noTimeLeft") ;
else ~add
post ("timeLeft) ;
tleep i Q
_’/ DECREMENT w

OnExit/
currentTime--;

cook | &

The simple C++ code

incrementTimer ()
currentCookTime+=060;

decrementTimer ()
If (currentCookTime>O0)
currentCookTime—-;

postTimeValue ()
1f (currentCookTime<=0)
post “~timeleft”;
else
post “timelLeft”;
sleep(1l);

That is all folks!

www.youtube.com/watch?v=iEKCHqSfMco

© V. Estivill-Castro 40

© V. Estivill-Castro 41

StateWorks

lavYaya)

Windows XP - Parallels Desktop

E&E Dhe | & b g B = @ @
B -
&t - | x| Input | Qutput | State |
Obiject type Obiject Name @ (& |) A &
Di_Run Di_Run
i =l = Di_Stop DLRun
g pat ‘ﬁ' M Qe Cen) Do_or Closed Di_Door
+ ;@:‘ Output P 11 M n

+ @ Interface
+ [Z]) Counter
+ [Supervision
- &% VFSM
6} Mw/Oven

+ $9 Unit

ﬂew“'_/FSM I Qeletel Duplicate | |Praper§ies...|

File Options Help

% SWLab - MWOven.swd

<

On Off
7 [Mw:DiDoor) [Mw:DoLamp
= ' |MW:Di:Run (2 [Mw:Do:Power
(e B o B
EF or
DI_R & Dool_C keed & Swp_Tl.. 3 Doar_Oper
Cooking Ny 2 [1930 - [Mw:NiCookingTime
: 0 2048 — |-
_ .llolllllllll?lllllsllll? |2048 7
o 12048 |

‘-llol s 0 =0 o047

|2047

(Bt [2047

PRy [2087

For Help, press F1

#Start| 57 StatewORKS Studio... || 5% SWLab - MWOven. ..

Click inside OS Window to capture mouse

© V. Estivill-Castro

2 «QB® 1:46 PM
E\ \“;‘n O M B3

42

Petri Nets

© V. Estivill-Castro

43

Behavior Trees

e Model
Behavior Tree

SHHE

Figure 6. The Model Behavior Tree of the Microwave Oven

© V. Estivill-Castro . 44

“Aidde suonoisay “aio/dX 3331 WOY 82:2Z 1B 6002 ‘GZ 420100 U0 PAPEOJUMOQ “ALISHIAINN HLIZ-IHD :0} Pajiwi 8Sn pasuadl| pazuoyiny

€€

UBAQ SABMOIDI dU} Jo 93] Joineyag ubisaqg ayl g ainbi4

Behavior Trees

e Design Behavior Tree

L

OVEN
>>PushButton << +

OVEN
>>OpenDoor <<

|

(cont.)

(cont.)

OVEN
- >>PushButton << >>OpenDoor <<

| OVEN

)

OVEN OVEN OVEN
- >>0penDoor << + >>PushButton << - >>Timed Out <<
LIGHT
[Off]
RS POWER-TUBE TIMER R7 POWER-TUBE
+ [Off] + [Extra Minute] + [Off)

TIMER OVEN A BEEPER
[Stopped]

[Cooking] [Emit Warning Beep]

© V. Estivill-Castro

45

Comparison

e Far simpler

e Less states that
StateWorks,

Behavior Trees
(less boxes and arrows)

e Far less crossings that Petri nets

e Behavior Trees miss the alarm
(beeper).

© V. Estivill-Castro 46

The interaction between
modules

e Shows up in the behavior tree.
e But does not happen in BECCIE

Systems Views Help

[SEEE]

Behavior Engineering Component Integr

n Environment

[System Explorer o2 [X]

[~syste.

#d @ |3 ReMicrowaveButton

ol !] 3 R:MicrowaveEngine

© & Light MicrowaveTimer
© & MicrowaveOveny/ [SLEEP]
©- & Button
©- & Beeper
© & Oven
o 2 i
> i m:z:m:xi’;‘:’e MicrowaveTimer | MicrowaveTimer ‘ MicrowaveButton ”
22cook?? 2?BUTTON: DISABLED?? 27add??
© & MicrowaveBution
© & MicrowaveBell
© & MicrowaveTimer
MicrowaveTimer MicrowaveTimer MicrowaveButton
[DECREMENT] [BROADCAST] [ENABLED]

MicrowaveTimer

[SLEEP]

MicrowaveTimer

2?BUTTON: ENABLED??

MicrowaveButton
22wait??

[SLEEP]

H [DISABLED]

el =1

i tn R:MicrowaveLight

& B

owaveLight
Continue u°'°"::‘ nes: stat " Continue | MicrowaveEngine User Events | Status
Step il e MicrowaveButton .., | UserEvents Status
User Event, Status Step 7
cook s
= Continue || MicrowaveBell
| UserEvents Status F——— :LIGHT_ON
| BUTTONDISABLED | :SLEEP Step interval
Tcorval stop :NOT_COOKING ~lighton
:ENABLED [Interval § us: Paused g
Status: Paused Interval ~noTimeLeft
wait Status: Paused 100 ms.
nt: 100 Status: Running L
ti int: 100 ms. interval | :BELL_OFF
nt: 100 ms.
[Status: Paused
nt: 100 ms.
#/start|) becie_v1.0 [C:MWINDOWSsyste. . | | Behavior Engineeri... c@2 @7 « 123 AM

Module interaction
diagrams

e Perhaps of a global behavior tree

The Software Architecture

For implementation

Software Architecture
e Agents / Robots

Reactive Reasoning/ Planning
Systems Systems

“Soft-Computing/ Symbolic Al
Computational Intelligence”

Hybrid System
Systems

© V. Estivill-Castro 50

A hybrid system

e The initial progress on logic and
reasoning within Al has largely been
discarded from mobile robotics in favour
of reactive architectures

e We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

e Plausible logic is the only non-monotonic
logic with an algorithm that detects loops

© V. Estivill-Castro 51

Hybrid System for Intelligent
and Integrated System

e Reactive System » Reasoning

e State Machine . Non_-Monotonic
Logic

© V. Estivill-Castro 52

Reasoning

e Deriving conclusions from facts

e Apparently, a fundamental
characteristic of intelligence

e An expected aspect of intelligent
systems

e Withdrawing conclusions in the light
of new evidence is a capability
usually referred to as non-
monotonic reasoning

© V. Estivill-Castro 53

Non-Monotonic Reasoning

e A form of Common Sense

e Retract previous
conclusions in the light of
new evidence

Planes usually leave on time.

My flight leaves at 11:00 am.

Therefore, | should be at the airport at 9:00am.
My flight is cancelled.

Makes no sense to take actions for going to the
airport early.

o A w0 N~

© V. Estivill-Castro 54

Result: Robotic Poker Player

e Integrate Environment
e Vision Complex
° Sound. | Interactive
recc?gnltlon Unpredictable
e Motion Control ..
Competitive
Incomplete
Gl Information
e %.y"ﬂ =
N o -

© V. Estivill-Castro 55

Behaviour Design

e Software Engineering
e Vvisual models of behaviour

event

>

statement from non-monotonic logic

» Behaviour Specification)

by humans Human-Robot

— .
» Human-Robot Interaction Collaboration

© V. Estivill-Castro 56

Previous Work

--- Software architectures for robotics

e Action - Sensor Model [Wooldridge 2002]
e Solution for control problem

e Golog [Vassos et al 2007]
e Aim for “Cognitive Robotics”

e Knowledge Middleware [Heintz et al 2007]
e Bridge low level sensor knowledge

e Robotic Architectures [Liu 2004]
e Generic Robot [Kim et al 2005]
Solution to platform dependence

© V. Estivill-Castro 57

Global Architecture

e Framework = Software Engineering
e Solves

Module Production / Workload problems
Software Development Methodology Problem

e Whiteboard (Blackboard [Hayes-Roth 1988])

e Solves

Knowledge representation problem
(facts with timestamp and author)
Module Interaction Problem

e Domain Knowledge
e Logics
Belief revision / knowledge elicitation

e Solves
Validation / verification /specification

© V. Estivill-Castro

58

Our Architecture

e Solution to Control Problem

exclusive

decomposable

priorities
asynchronous
associated with
actuators

© V. Estivill-Castro 59

Behaviour lllustration

e Robotic Soccer

e Simple Behaviour

/" BALL_CHASER ™
_zaball_not_visible
search
Do:spin
» a?l_V_iSible /
e Sub-behavior
/~ BALL_FINDER ™~

—0.1ls passed

flook_under_head
Doiwalk bac

—"1s passed

look_around
Do:spin

» Robotic Soccer

Complex

behaviour
/" BALL_CHASER_W_FINDER ™\

ball not visible

/ follow ™\
. Do:walk |

BALL_FINDER

/

ball visible

© V. Estivill-Castro 60

Engineering the behavior

e Using visual descriptions of the
behaviour that incorporate formal logic

e Engineers use diagrams to model
artefacts.

e Software Engineering has traditionally
used diagrams to convey characteristics
and descriptions of software

© V. Estivill-Castro 61

SUOY POATII

GO_TO_

QQSITION

© V. Estivill-Castro

KICK_TO

DO:find_opposite goal
and head_kick()

62

///RGENT

R :
Knowledge Base casoning
> > .
Whiteboard State Machine
/ Interpreter
(
» N) o))
< ysensor wrapper| hactuator wrappef o
= ©
S —
0
\ w \ . a/

perceptiQy/) _ action
ENVIRONMENT

© V. Estivill-Castro 63

Wrapping Sensors and
Actuators

e Portability
e Simulation / Virtualisation
e Validation

Whiteboard ‘

sensor 1 belief of
observing the ball

behaviour J

© V. Estivill-Castro 64

Wrapping Sensors and

Actuators

e Portability

e Simulation / Virtualisation

e Validation

~

sensor 1

sensor 2

Whiteboard

no behaviour

contradictory
information
about the ball

P

Alternative
Example: Seeing both goals

© V. Estivill-Castro

65

Our approach

Vision and
Object Recognition

Non-monotonic
reasoning

Consistency
Module

Sensor fusion

© V. Estivill-Castro 66

Our approach

Consistency
Module

Non-monotonic logic that combines facts known
about the environment with what 1s reported
by the sensors

© V. Estivill-Castro 67

Wrapping Sensors and e

Actuators ’
> Porabllty L0y
e Simulation / Virtualisation \ .:-.7!
e Validation

Be L
- -
Reasoning
Whiteboard Engine
. -
sensor 1 1 useful

information
sensor 2 about the ball

behaviour J

© V. Estivill-Castro 68

Wrapping Sensors and
Actuators

e Fusion in time

Reasoning
Whiteboard Engine

p T-——_A

sensor | 1 useful

time ¢, information
about the ball
sensor 1 ,
: behaviour J
time ¢,

© V. Estivill-Castro 69

Independent and
Asynchronous

e Reasoning Engine

Reasoning Engine

Control

© V. Estivill-Castro

70

Reasoning Engine

e Template Method

© V. Estivill-Castro 71

Interpret a behavior

STATE_ID_1 logic_output_2/action_2

Do: '
ACTIVITY 1 : :
= logic output 1/action 1

logic output 3/action 3

STATE ID 2
Do:
ACTIVITY 2

© V. Estivill-Castro 72

© V. Estivill-Castro 73

Summary

| hope to collaborate with your expertise
A focused project

Humanoid that interactively plays team
games of incomplete information with
humans

Enables research on intelligent/smart devices

We can postulate the use of intelligent capabilities to
enhance the life of humans

care / assistance / education / tele-
presence

Keep in mind it is more important to improve the
condition of human living than to imitate it.

© V. Estivill-Castro 74

© V. Estivill-Castro 75

