Engineering the behavior of Robots:
Simulation and Model-Checking for
Embedded Systems and Robotics

Vladimir Estivill-Castro

Griffith University
IS

(in collaboration with many others,
particular thanks to members of the MiPAL)

© Vlad Estivill-Castro

Outline

e Robotics and Software Engineering

e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e lllustrations

e Summary © Vlad Estivill-Castro 2

Outline

e Robotics and Software Engineering

e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e lllustrations

e Summary © Vlad Estivill-Castro 3

Share the Interest for
Robots in Human
Environments

Safety

Software Engineering for Robots
Reasoning

Human Computer Interaction

© Vlad Estivill-Castro

Share the Interest

Model driven engineering
Simplicity to program
Keep it simple, stupid (KISS)|80/20 rule

High cohesion, Low Coupling
(Distributed Components)

(Data Distribution Service -Publisher/
Subscriber)

Platform Independence
Composability of components

© Vlad Estivill-Castro

A central project for intelligent

integrated systems

e The development of autonomous mobile
robots for multi-modal interaction with
humans

e leading to

e useful applications integrating

agent technology, HCI, Al, image processing, robotics, vision, planing,
problem solving, game theory, machine learning, voice recognition,
sensor fusion,

e emotional reactions and advanced research in
areas of intelligent integrated systems

e participation with prototypes in international
benchmarks that have academic and industrial
recognition

RoboCup Soccer, RoboCup@Home, Agent-Poker, Open Game Play

© Vlad Estivill-Castro 6

Hypothesis (1)

e In the not so distant future humans will
be surrounded by all sorts of "intelligent
machines’

Intelligent buildings and Sensitive
computing

Computing environment intended to assist the
user for retrieving, organizing and interpreting
available information resources by augmenting

and extending the sensory as well as the cognitive
capabilities of the user

. Ambient Intelligence / Tele-presence

© Vlad Estivill-Castro 7

Hypothesis (2)

e The sector of the human population that
Is to benefit the most from robots around
us’ are people with disabilities, sick and
rehabilitation patients, the elderly and
pupils
e If technology is to reflect an advance society

it should make an impact on improving

the life of its weak/disadvantaged/untrained
members

&

© Vlad Estivill-Castro 8

Hypothesis (3)

e A convergence is looming on
| Information and Communication
8 Technologies
e Mobile phones, PDAs, Wireless/

Internet and Intranets through
computer watches

“the Cloud”
e \Wearable computers

© Vlad Estivill-Castro 9

Hypothesis (4)

e There is a shift from “accessible
computing” to “user centered design”
in the Human-Computer Interaction
community

e Accessibility

Providing accessibility means removing barriers that
prevent people with disabilities from participating in
substantial life activities

e UCD

Focusing on the product's potential users from the

very beginning, and checking at each step of the
way with these users to be sure they will like and be

comfortable with the final design.

© Vlad Estivill-Castro 10

Hypothesis (5)

» The fields of artificial intelligence, robotics,
machine learning, human-computer interaction
are advancing in research that

/ J l"\".

Soc

gy

e Integrates advances
ol from different fields
narsed o shows deployment of
sy 4 the technology in
demonstrable
prototypes

SSSSS

nnnnnn
i

g
a
‘o5

© Vlad Estivill-Castro 11

Hypothesis (6)
The interface may not be a
robot

e [he actuators and sensors can be
remote

e Not all of them on board of the robot

e The control may not be on board of the
mobile components

e But the technologies developed will have
use in all the applications emerglng from
this flexibility. "

Hypothesis (7)
Agent technology is
influencing everyday life

e Environments ..) -
o Computer Games onments

e Age of Empires * Dofus
e Age of Mythology * Runescape
e Club Penguin
o Xbox/PlayStation/ e 2nd Lite s
Wii e Automatic assistants
e eBay
o Tamagochi/Nintendo » i!ﬂ'.fy

DS A
;ﬂf

© Vlad Estivill-Castro 13

DOOOOOOOO

What does robotics
provide?

e Mobility/autonomy

e Embodiment

e Physical presence q(:y'

o Teams of robots 4(. “\r’ﬂ)

e Collective abilities / remote

control W ! e~
2)|n}

© Vlad Estivill-Castro 14

Robotics has penetrated
the home market

e Toys
e Lego Mindstorms™

licrosoft Internet Explorer =18] x|
GBack - & - @ 2] A | Qsearch [GaFavortes (Pristory | B S B - =
Adehress [@] hitp: Jumww.robotoys.com =] @0 [Jumis]

RoboToys.com Phone Orders Call
2025 Ventura Blvd. (818) 788-3344
Studio City, CA 91604

=

{

‘ ¥, ‘ B 2 What's New?

"Toys for the Modern Age"™

Je carry a variety
Ro

r
I
|
i
4
|
4
|
I
|
4

art on the
s erstand the principles
of the upcoming Robotic Revolution. For both the Young and
old student, RobaToys.com - a science praject unfinished.

Need Help?

(&7 htp bok t_main html

© Vlad Estivill-Castro 15

Robots on children’s
bedrooms

Robotics has penetrated
human environments

e Home artifacts
e The EUREKA Robo Vac™

e Electrolux Trilobite ™

e Guides for

e Visitors in museums and
the elderly

e Vvisitors in airports

© Vlad Estivill-Castro

Autonomous Vehicles /
Robotic Cars are

penetrating the Urban
Environment

f

:;(AFH o

.-?‘_: T '

-/

Robots are penetrating the
media

e News readers e Robotic interfaces are

o Booking agents, more human-like

_ e The uncanny valley
traveling agents, Environments/Virtual

eCommerce reality/Attractions

e Opponents are simulated
agents

e Is the matrix possible?
e Movies/Special effects
e Military
e Entertainment parks

© Vlad Estivill-Castro

19

Outline

e Robotics and Software Engineering

e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e lllustrations

e Summary © Vlad Estivill-Castro 20

How do you describe the
behavior as an everyday
person?

(to your robot / companion)

Humans describe requirements
e Of the systems
e Of the capacities of the system

e Realizing the human description is a common theme
between

Software Engineering

Artificial Intelligence

© Vlad Estivill-Castro

21

How do you describe the
behavior as an everyday
person?

(to your robot / companion)

e In a description

e There is a declarative part

a context, a description
ontology (?) knowledge representation?

If formal (unambiguous), needs a logic

e There is a state - transition - action part

Formally, an algorithm in a formal model of
computation

© Vlad Estivill-Castro 22
© V. Estivill-Castro 22

Specifying a behavior

e |t should be natural to the human

e For the declarative parts,
mechanisms used by humans should
be provided

common sense reasoning
non-monotonic logic

e Mechanism should be
e Simple to learn
e Formal to remove ambiguity
e Implementable (interpreter/compiler)

© Vlad Estivill-Castro

23

lllustration

e Naturally to develop rules systems where the
new rules redefine exception to the previous
ones

° 3 laws of robotics

A robot may not harm a human

A robot must obey a human unless it
contradict law 1

A robot must protect itself unless
contradicts rule 1 or 2
e Ripple down rules (Knowledge elicitation)

Rules are defined and new rules are

subsequently added to revise the cases not
covered by the more general rules

A tree that is a hierarchy of rules
No formal reasoning

© Vlad Estivill-Castro

Proposal for engineering the
behavior

e Using visual descriptions of the behaviour that
incorporate formal logic

e Engineers use diagrams to model artefacts.
e lterative refinement

e Software Engineering has traditionally used
diagrams to convey characteristics and
descriptions of software

e High-level tools
e Observations:

e Specifying behaviour unambiguously is
difficult

e Interpret human descriptions of behaviour is
also difficult

© Vlad Estivill-Castro
25

For Requirements
Engineering

e Use CASE (Computer Assisted Software
Engineering)
e graphical models

e code generation
Model Driven Engineering

e Bottom-up approach / lterative refinement

e Elude the very large syntax and semantics
of OMG modeling (standard) languages

e for example : UML [2.0]

© Vlad Estivill-Castro
26

Requirements Engineering

e Minimize software faults
e disambiguate requirements
completeness
consistency
e validate requirements
correctness
e model / simulate requirements
platform independence
e traceability of evolution / change in requirements
e communicate requirements

e implement requirements (automation)

© Vlad Estivill-Castro
27

Model-Driven Engineering

e Approach in Software Engineering
e Construct software / Safe Software / Quality Software

e models rather than programs are the principal outputs of
the development process (Sommeville, 2009).

e The programs that execute on a hardware/software
platform are then generated automatically from the
models.

e Raises the level of abstraction

J2EE Translator »| J2EEspecific | | Javacode | | jaya program

model generator
Platform
independent
model
NET specific C# code
3 .
Net Translator model — generator C# program

(c) Vlad Estivill-Castro 28

Modelling behaviours

We introduce diagrams that use logic to
describe behaviour.

Our proposal extends techniques like

Finite State Machines
. Petri Nets

Object Models for Object Orientation, and
Behaviour Trees.

We model the relationship between several
Inputs as asserted conditions about the
environment that an agent can reason about
(using logics) and resolve with respect to
knowledge of the environment

Computer Assisted Software Engineering
enables the manipulation of modelling

diagrams and the generation of code from the
models. © Vlad Estivill-Castro

29

Formal Logics (declarative)

For the description of the behaviour
Advantages
1. Descriptions are unambiguous
Descriptions have specific meanings.
2. Ease of description - descriptive
Focus is on what the behaviour does, not how it happens
3. Can be translated to implementations in imperative languages
like C++, Java
4. Understandable by humans
Can be the result of a knowledge engineering exercise
Usually humans describe exceptions and laws governing
many situations in this way
Disadvantages
1. Can lead to undecidable settings or other difficulties for
implementation, like very large and/or inefficient programs

© Vlad Estivill-Castro
30

lllustrating state diagrams
BALL CHASER ﬁALL_FINDER \

0.5 sec passed
—

ball not vi bl

Lt Foarch / look_under_head
Do: walk Do:spin f Do:walk back

bllv ible

look_around

Do:spin

e EXxclusivity S; | c¢,~event, | S;
ciac; = false V /7 s; | c,=event, | s,
e Exhaustivity

\ =" C;= true S; c,=~event, S,

© Vlad Estivill-Castro
31

State diagrams (action)

e Correspond naturally to

the notion of state
machine

e Already very common -

IN many human-
computer interfaces

e elevators/mobile
phones/ washing
machines

e Formal semantics

(formal mathematical

object)

INIT-REBOOT

Receive DHCPACK;
IP Address Is Taken;
Send DHCPDECLINE

REBOOTING

Receive __|
DHCPNAK

Receive DHCPACK;
IP Address Is Free;
Start Lease, Set Timers

Reallocation Process

T1 Expires;

Receive DHOPACK. send DHCPREQUEST
RestartLease ¢ cyrrent Lease Server

and Timers

RENEWING
Renewa ! Process

REBINDING

Lease
Expirlatlon

Send DHCPDISCOVER

SELECTING

Receive DHCPOFFERS;
Select Offer,
Send DHCPREQUEST

Receive DHCPACK;
IP Address Is Free;

Receive
DHCPNAK

Receive DHCPACK;
IP Address Is Taken;
Send DHCPDECLINE

Start Lease, Set Timers

Allocation Process

Terminate Lease;
Send DHCPRELEASE

Receive __|

DHCPNAK 4
Start New Lease
and SetTimers
Receive _]
DHCPNAK

© Vlad Estivill-Castro SR

32

State diagrams (action)

SALLY SHLAER ~ STEPHEN J MELLOR

e Widely used in Software Engineering ORJECT
e OMT, then UML, Shlaer-Mellor LIFECYCLES

Modeling the World in States

o Widely successful tool in industry ARTIFICIAL
e StateWorks, executableUML FOR GAMES ...
e c_gckmLOOKINSIE‘- g , % 3 g i T
Modeling Software A g
Vit s ¥ 4 ¥ Ky
Machines ..

N\

PRACTICAL

& SimBionic;

A Practical Approach

UML STATECHARTS

IN Ci'C++, second Edition
Event-Driven Programming for
Embedded Systems

© Vlad Estivill-Castro

33

State Machines

e Some extension and equivalences to
other formal models

e Multi-threaded State Machines

e Petri Nets

e Distributed computation

e Team automata

e Security formalisms (verification)

© Vlad Estivill-Castro
34

Behavior Trees

e Formalism of requirements engineering
e Similarto ‘Use Case’ Modeling

e Tool for ‘Behavior Engineering’

e Capture the threads of behavior from
the linear description

e Textual to formal

R, R,
L

35

Convert State Diagram
into Behaviour Tree

®/@_‘\‘
@ ®
G)\ e Draw down by
@ breadth-first search
\‘ e Already visited nodes
\' are cloned but not

explored again

@)
\@
‘ Potentially equivalent

@ modeling approaches

© Vlad Estivill-Castro
36

Convert a node in the tree to
a module in Plausible Logic

1. name () .
‘ 2. type State Type (y S 1,...,) .
\‘ 3. Vv{State() ,.., State ()).

‘ 4. v{-State(S i),-State(S j)}. (V 1 = 7)
5. 1nput{“e 1”}. (for 1=1,..,k}

Q 6. Default: = State() .
7. Switch B :{%e 1”7} = State() .

(for i=1,.., k)

§. Switch > Default. (for 1i=1, .., k)

Potentially equivalent
modeling approaches

© Vlad Estivill-Castro
37

S w D

0 Jd o O

Switch S 0 S p:

Switch S 0 S p

Switch S 0 S p
Switch S 0 S p

1:{"e u”} = State(S 1).
1 > Default.
j:{“Ye v”} = State(s 3J).
] > Default.

{“e vAe u”} = State(S p).
Flexibility of

default reasoning

> Default.
> Switch S 0 S 1.

> Switch S 0 S 1i.

© Vlad Estivill-Castro

38

Hybrid System for Intelligent
and Integrated System

o Reactive System Reasoning
e State Machine Non-Monotonic
Logic
1. name (Node) .
2. type State Type(S 0,..,S k).
1 3. V{State(s 0),..,State(S k) }.
4. V{-State(s i), -State(S j)}.
(V 1= 3)
5. input{“e i1”}. (for i=1,..,k}
6. Default: = State(S 0).
7. Switch S 0 S i:{%e i”} =
State(S 1i). (for i=1,..,k)
8. Switch S 0 S i > Default.

© Vlad Estivill-Castro
39

Behaviour Design

e Software Engineering
e visual models of behaviour

event

statement from non-monotonic logic

» Behaviour Specification

by humans Human-Robot

» Human-Robot Interaction Collaboration

/

© Vlad Estivill-Castro
40

Event-Driven

Most common approach

e System is in a state A
waiting
does not change what is gain
doing/h '
.omg app.Jenlng posses lOOSC
until event arrives . pOSSCSSi
e Events change the 5101
state of the system v on

(c) Vlad Estivill-Castro 41

Logic-labeled FSMs

e A second view of time (since Harel's
seminal paper)
e Machines are not waiting in the state for
events
e The machines drive, execute

e The transitions are expressions in a logic
or queries to an expert system

is the game over?

are'the fans misbehaving?

attack for a

[am injured?

b It ~did the team lost possession?

(c) Vlad Estivill-Castro 42

ORANGE_BLOB_FOUND

OnEntry { extern blobSizeX; extern blobSizeY;
extern blobArea; extern blobNumPixels;
toleranceRatio = 2; densityTolerance = 3;
badProportionXY = blobSizeX/blobSizeY > toleranceRatio;
badProportionYX = blobSizeY/blobSizeX > toleranceRation;
badDensityVsDensityTolerance =
blobArea / blobNumPixels > densityTolerance;

is_it_p_ball

$ BallConditions.d
BALL_FOUND

name { BALLCONDITIONS}.

input{badProportionXY}.
input{badProportion¥X}.

_ input{badDensityVsDensityTolerance}.

BCO: {} => is_it a ball.

BCl: badProportionXY => ~is it a ball. BCl > BCO.

BC2: badProportionYX => ~is it a ball. BC2 > BCO.

BC3: badDensityVsDensityTolerance => ~is it a ball. BC3 > BCO.

output{b is it a ball, "is_ it a ball"}.

(c) Vlad Estivill-Castro 43

50 S—-D>—

CDB_.H-

Conceptual cycle

e Similar to a ‘reactive-architecture’
e Similar to a whiteboard

architecture
sensor 1 ——
sensor 2 —
sensor 3 _—— W
h CONTROLAT ITS OWN TIME
i
h . :
e Do the right thing by the state of the world
sensor 4 e—— -
0
a
r
d
sensor n _—— Deliberative control
architecture by logics
sensor space of the robot Behavior-base control by

(c) Vlad Estivill-Castro yectors of FSMs

44

Outline

e Motivation

e Robotics and Software Engineering
e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e lllustrations

© Vlad Estivill-Castro 45
e Summary

Prototype demonstrated at
RoboCup@Home 2007

© Vlad Estivill-Castro
46

A logic for looking after
the lady

-_

9.

. Usually there is no reason for alarm

The absence of owner for a long time is reason for alarm (this
takes precedence over rule 1)

Lying usually results from a fall

A fall is usually a reason for alarm (this takes precedence over
rule 1)

Being on bed is not a fall (this takes precedence over rule 4)
Lying for a long time means owner is not getting up.

Not getting up is a reason for alarm (this takes precedence
over rule 1)

If it is night, it is fine not to get up (this takes precedence over
rule 7)

If there is a stranger looming over the lady, it is reason for an
alarm (takes precedence over rule 1)

10.0wner can’t be absent while on bed, or lying or lying for a long

time.

11.Owner can’t be lying for a long time without lying for a short

time. © Vlad Estivill-Castro

47

Diagrams to illustrate rule
relations

nighttime

N

lyingLong

looming

notGettingUp

{

onBed

absence F\

lying
© Vlad Estivill-Castro
48

A diagram for a poker player

€ Applications Places Desktop

3
5%
7

2 11:40 AM W (4

= | e | (X

File Zoom Out Zoom In

Personality_Decision
“random_GT_BluffRatic” uper_Tight_Aggressive
Bluffer
Oppanent(Tight_Passive) Tight_Aggressive
Opponent{Loose_Passive)
Opponent{Loose_Aggressive) Su e
Opponent{Tight_Aggressive)
A “handStrength_GT_40", equal_Game_State({Preflop,s)
1Y
H] “handStrength_GT_50", equal_Game_State{Preflop, s)
“handStrength_GT_40"
“handStrength_GT_50"
“handStrength_GT_15"
“handStrength_GT_30"
ThandStrength_GT_50", equal_Game_Ste{Prefiop,s) |"handStrength... l v | > |"hand$trengt... | v |

[Add Defeat |

“"handStrength_GT_50", equal_Game_State(Pr...
“"handStrength_GT_40", equal_Game_State(Pr...
“"handStrength_GT_30" > "handStrength_GT_...

“tightness_GT_tightness_Threshold™ “aggressiveness_GT_aggressiveness_Threshold”

”agg:essN{ss_CT_agqvessmess_Threshold‘. “tightness_GT_tightness_Threshold™ ’ Delete ‘ | I
[New Type | [Tight_Aggressive

New External Condition ‘

New State ‘ Raise

Lo
49

[:,p [JPanel (Java 2 Platf...][{4/ [Debian -- The Univ...][[J NetBeans IDE 6.0.1]F&V#aﬁl

Code generated (example)

/* This is code Generated by the DPLGenerator
** This program was made by Mark Johnson 2008 (MiPAL)

** File Opponent.d
*/

name{Opponent}.

type Opponent(x<-Opponent_Type).
type Opponent_Type = {Loose_Passive, Loose_Aggressive, Tight_Passive, Tight_Aggressive}.
\/{Opponent(Loose_Passive), Opponent(Loose_Aggressive), Opponent(Tight_Passive), Opponent(Tight_Aggressive)}.

\/{~Opponent(Loose_Passive),~Opponent(Loose_Aggressive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Tight_Passive),~Opponent(Tight_Aggressive)}.

input{"aggressiveness_GT_aggressiveness_Threshold"}.
input{"tightness_GT_tightness_Threshold"}.

Default_Opponent: {}=>Opponent(Loose_Passive).

Switch_aggressiveness_GT_aggressiveness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold"} => Opponent(Loose_Aggressive).
Switch_aggressiveness_GT_aggressiveness_Threshold > Default_Opponent.

Switch_tightness_GT _tightness_Threshold: {"tightness_GT _tightness_Threshold"} => Opponent(Tight_Passive).
Switch_tightness_GT _tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold",
"tightness_GT_tightness_Threshold"} => Opponent(Tight_Aggressive).

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_tightness_GT_tightness_Threshold.
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT _tightness_Threshold > Switch_aggressiveness_GT_aggressiveness_Threshold.

© Vlad Estivill-Castro
50

Earlier Process -
to . ‘
E m bed Des i g n Haskel implementatiodn Java

of non-monotonic logic

into the r
AIBO Robot

-

C++ glue I
, code \ Clompetitio

statisticy

C++ C++
simulator for AIBO

nNNnnN DefeasibleTest ﬂ

Logic: | dpl cdl | proofLevel: [4 p T B € L b «f —— r o

Input State | | Atom Proof 4 Negation /‘ s
q.aggressiveness_GT_aggressiveness_Threshold Opponent_Loose_Aggressive (aToTr) (aTo 1) W [= [B
q.tightness_GT_tightness_Threshold _ | Opponent_Tight_Aggressive Eofy) (afofd L]

Opponent_Tight_Passive o] (1[0

Opponent_Loose_Passive -To71) [afely

Add Delete (Add) (Delete x
7. /

© Vlad Estivill-Castro > n

Systems interacting with
humans

A

52

FSM+DPL for top behaviour at
ompetition in RoboCup 2011
Istanbul, Turkey

GetUpFromFron TRUE
t

ForcedToBlueKi
ckOff

ForcedToRedKi
ckOff

TRUE GetUpFromFron
t
TRUE
UDPsaysBIueKickOff robotFallenForward
TRUE TRUE
UDPsaysRedKickOff
GetUpFromBac robotFallenForward
rst.n k Duration
TRUE
robotFallenBack TRUE
readyReceived setReceived TRUE
leftFootBumpPressed robotFallenBack
GelUkaromBaC
TRUE rightFootBumpPressed
TRUE
shortChestButtonPressed readyReceived readyReceived playingReceived
GetUpFromFron
t
initialReceived ReadyTheirGoal ReadyTheirGoal
TRUE

ReadyOurGoal

TRUE
ReadyOurGoal

robotFallenForward
TRUE
PLAYING
shortChestButtonPressed

penaltyReceived
playingReceived
SNONUNESIBULIONFTessea
TRUE

PENALIZED \

finishedReceived robotFallenBack

FINISHED

© Vlad Estivill-Castro 54

GetUpFromBac
k

FSM+DPL for top behaviour at
competition in RoboCup 2012
Mexico City

export MASTER=StateMachineStarter
export FSMS="SMButtonChest
SMButtonLeftFoot
SMButtonRightFoot
SMRobotPosition

SMGetUp

SMGameController

SMPlayer

SMGoalie

SMBallFollower

SMKicker

SMHeadBallFindAndTrack
SMHeadScan

SMRightFootControl
SMLeftFootControl
SMHeadGoalFindAndTrack
SMBallSeeker © Vlad Estivill-Castro 55
SMReady"

~ Simulator

oW u oA . L [RO - B . Hou
S Maxcr © Sewmcienace @ MAicmer O Texemy O hewe O Uty @ JamcltOcenm

(e o O vn o grwriiBor)

owsUn — —
- —
.

N >, et ot wor Al b A tive
o | Cpon
TR \
\ i ey Vs

Butond' ahod &5 low

e P

http://www.youtub¢.Coitt/Watch?v=FpVUSrvLI0c&

On-line debugging and
simulation

s Real-Ti Vionitori .{If‘éols
FSM Designer & Debugger

2
(w‘
Real-Time Monitoring and Debugging of % &

Finite-State Machines running live on the

target System (e.g. the Nao Robot)

(c) Vlad Estivill-Castro 58

Conceptual cycle

e Similar to a ‘reactive-architecture’
e Similar to a whiteboard architecture

sensor 1

sensor 2

sensor 3

sensor 4

SENsor n

_9..-

2

|
l]
0 =0T DT —3

CONTROLAT ITS OWN

TIME

under several CPU
rate for the sensors

Do the right thing by the state
of the world

DO THE RIGHT THING
FOR MEMORY AND

SENSOR SPACE
E - 8
O
sensor 1 e On
sensor 2 ﬁ.
W
sensor 3 _$- l?-
h
sensor 4 — !g
o
sensor C, ﬁ 3
sensor C, ———

SE€Nsor n

—9'_-.

CONTROLAT ITS OWN TIME

Do the right thing by the state
of the world

DO THE RIGHT THING
FOR MEMORY AND

SENSOR SPACE 59

A classical example

e The One-Minute Microwave Oven

literature approach

behavior specification of all objects of a class
Shlaer-Mellor

StateWorks

Behavior Trees

PetriNets

SCXML - State Chart XML: State Machine
Notation for Control Abstraction

Realistic - scaled down version of an X-Ray
machine

© Vlad Estivill-Castro

60

One Minute Microwave

e Widely discussed in the
literature of software
engineering

e Analogous to the X-Ray
machine

e Therac-25 radiation
machine that caused harm
to patients

e Important SAFETY

feature

e OPENING THE DOOR
SHALL STOP THE ._
COO KI N G (c) Vlad Estivill-Castr¢

Requirements
(One-Minute Microwave Oven)

Requirements

Description

R1

There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
is, energize the power-tube) for one minute

R2

If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3

Pushing the button when the door is open has no effect.

R4

Whenever the oven is cooking or the door is open, the light in the oven
will be on.

RS

Opening the door stops the cooking.
and stops the timer

and does not clear the timer

R6

Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7

If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has

finished.
S\ Etivie

62

The DPL+State _Machine
approach

e Step 1: Consider writing the script of music for
an orchestra. Write individual scripts and place
together all actuators that behave with the
same actions for the same cues

e Example: The control of the tube (energizing),
the fan and the spinning plate

‘\Microwave Engine
\ cook

— —_—

\v ///// \\\g -
‘/ NOT_COOKING \‘ \/ COOKING]
post/ post/ J
Motion:Stop; ‘ Motion:On;
| § J | 8

© Vlad Estivill-Castro
63

Step 2: Describe the conditions
that result in the need to change

state

[¢]

% MicrowaveCook.d

name {MicrowaveCook}.

input{timelLeft}.

input{doorOpen}.

CO: {1} =>
Cl: timeleft =>
C2: doorOpen =>

output{b cook,

~cook.
cook. C1 > CO.

.\Microwave Engine

~cook. C2 > C1.

"cook"}.

w ~— ~cook —
— T
| NOT_COOKING | \ COOKING w
Post/ ’ p.ost/
Motion:Stop; Motion:On;
Action:

Posting a message
to the whiteboard

© Vlad Estivill-Castro
64

Step 1 (again): Analyze
another actuator

e lllustration: The light

Microwave Light

lightOn
/

(LIGHT_ON |

tpost/ Lights: Off; post/ Lights: OnJ

\ N“ghtu

© Vlad Estivill-Castro

/" LIGHT_OFF

NG

65

Step 2 (again): Describe the
conditions that result in the
need to change state

% MicrowaveLight.d

name {MicrowavelLight}. Microwave Light
/ lightOn \

input{timelLeft}.

LIGHT_OFF | [LIGHT ON

\
input { doorOpen } . kpost/ Lights: Off; ‘ h:ost/ Lights:OnJ

LO: {} => ~1ightOn.

Ll: timeLeft => 1lightOn. L1 > LO.
L2: doorOpen => 1lightOn. L2 > LO.

output{b lightOn, "lightOn"}.

© Vlad Estivill-Castro
66

Step 1 (again): Analyze
another actuator

e lllustration: The button

Microwave Button
add \
-

(DISABLED \ ENABLED w
post/ post/
Microwave :DISABLED Microwave : ENABLED

K ~add /

© Vlad Estivill-Castro
67

Step 2 (again): Describe the
conditions that result in the need
to change state

% MicrowaveButton.d

name {MicrowaveButton}. .

‘\ Microwave Button
input{doorOpen}. \ add
input{buttonPushed}. v \\\\Q

[DISABLED [ENABLED
post/ k\ post/ J
Microwave :DISABLED Microwave : ENABLED

CBO: {}
CB1l: buttonPushed
CB2: doorOpen

> add. CB1 > CBO.
> ~add. CB2 > CBLl.

A
N

output{b add, "add"}.

© Vlad Estivill-Castro

Step 1 (again): Analyze
another actuator

e lllustration: The bell

‘\Microwave Bell
timeLeft —
{BELL_OFF {BELL_ARMEDJ

/

(BELL_RINGING w ~timeleft

post/ Sound:On; J/

© Vlad Estivill-Castro

69

Step 2 (again): Describe the
conditions that result in the
need to change state

No need for a logic: timeLeft
- posted by another module
- does not require a proof

Microwave Bell

~— timeleft —

AR (BELL_ARMED}

/

BELL_RINGING w ~timeleft

post/ Sound:On;
| W/

© Vlad Estivill-Castro
70

Step 1 (again): Analyze
another actuator

e lllustration: The timer

TRUE
% \ buttonPushed && !doorOpen && (currentTime<4035)

1 INIT w 2 TEST \
OnEntry {int currentTime; extern buttonPushed OnEntry
extern doorOpen; currentTime=0;} {timeLeft=0<currentTime;} 'buttonPushed
S OnExith _________
& ¢
TRU
/;:pen && timeLeft && timeout(1000000)
(4 DECREMENT (3 ADD_60
OnEntry {currentTime=currentTime-1;} OnEntry {currentTime=60+currentTime;}
ONEXItO____________________ OnExit{timeleft=1y ____________
{ {

© Vlad Estivill-Castro 71

The complete arrangement

Licht
] R Motor
2 NOT_SHINE_LIGHT doorOpen Il timeLeft 1 SHINE_LIGHT

OnEntry {int light; light=0;} OnEntry {light=1;}

___________ 2 NOT_COOKING 'doorOpen && timeleft _ 1COOKING)
Y /\ ldoorOpen && ! timeLeft \{} — \

OnEntry {int motor; motor=0;}

¢
B 11 doorOpen |l ! timeLef

2 OFF 1 ARMED

timeLeft
OnEntry {int sound; sound=0;} OnEntry {}
OnExit {} OnExit {}
0) 0
; °
4 1 RINGING) Tlmer
OnEntry {sound=1;} true
: bannnnn 0 Fe-—-—2XTT 2T
timeout(2000000) OnExit {} imeLeft R{ \ buttonPushed && !doorOpen && (currentTime<4035)
————————————— ltime¢Le
Y J (1 INIT \ (2TEST B
OnEntry {int currentTime; extern buttonPushed OnEntry
e_xleln_dggr(_)p_eg;_cgrlegt;l'if'ngz_o;_} ______ {timeLeft=0<currentTime;} IbuttonPushed
OnExit {}
¢
tru
ldoorOpen && timeLeft && timeout(1000000)
(4 DECREMENT (3 ADD_60
OnEntry {eurrentTime=currentTime-1} ___ _ OnEntry {ourrentTime=60+currentTime;} _
OnExit {} OnExit {timeLeft=1;}
{ {

(c) Vlad Estivill-Castro 72

That is all folks!

© Vlad Estivill-Castro
73

www.youtube.com/watch?v=iEKCHqSfMco

~SOOOIOOOCOIC

‘ l
-~ N\ |-\ A } ,‘ :

© Vlad Estivill-Castro
74

© Vlad Estivill-Castro 75
© V. Estivill-Castro 75

Outline

e Motivation

e Why State Machines and Why Logic
e Examples
e Comparison

e Architecture

© Vlad Estivill-Castro 76

Contrast of sequential

execution
time-triggered
event-driven models architecture |
e allow open concurrency e prescribes the scheduling

e this means the state of the e reduced space of states of
system are all combinations the system
of states of each thread

e models become complex 4 models are simpler

e language constructs for
consistency

e model-checking becomes
unfeasible

e simulation is not repeatable

e model checking becomes
feasible

e SIMULATIONS are
repeatable

(c) Vlad Estivill-Castro 77

StateWorks

Windows XP - Parallels Desktop

+ Interface
+ fZ]] Counter
+ {0 Supervision
- &% VFSM
&, MwOven

+ £ Unit

New.. | VFSM | Qelete' Duplicate [Plopel;ies...l

DI_Ruh & Door_C keed & SKp_Tl... Door_Open

3
Cooking

Door_Cksed

<

& b R B = [Q Iy
-~
- 8| x| Input | Output | State |

Obiect type Object Name @ (& |) & &
Di_Run Di_Run

i =I5 =~ Di_Stop Di_Aun

g pat 63‘ MSfMhseut (w5 o] Do_m Closed Di_Dom

+ ,Q\ Output P 11 M N

¥ SWLab - MWOven.swd

File Options Help

On Off
ce)

= [Mw:DiDoor

_.,
)

Mw:Do:Lamp

' |MWw:Di:Run

Mw:Do:Power

Q000000

? [1930

0 [2048

— |Mw:Ni:CookingTime

~I

0 [2048

.Iﬂllilsllll?lllllslllllo |2043

-Iﬂllilsllll?“lllslll!lo |2047

0 [2047

7 [2047

.Iﬂu;lsml?mllsmll

Mo || R

For Help, press F1

tf_'Start| 5T StateWORKS Studio. .. \ {e SWLab - MWOven....

Click inside OS Window to capture mouse

© Vlad Estivill-Castro

2 «OB® 1:46 pm
De®e 6=

78

Petri Nets

light_on light_off
) (D
AR
7
/

timer_value

DN
l \:\N\///T/}’. ‘\ \\\

"-l. />\/\\\‘! |

'd
-1
~
yd

o
o
\ /N . R2 button extra
/T~ \ decrement_timer: “minute
p AN <7 / A
) \ i \ K)
/ //// \". // ; \\\\ / : =
P \ / ﬁrﬁer_expirqg,‘;\
/ _fot_cooking_| Y | __—]
door opengg/ door_closed ’/7//\\""_,7 /’ f co
%_,— { \:%;\ .\ ;L
7 T / W
N, \Van “*/ff/;m% - - \!
\ \ - — ~ il
\\ \ f // ."l ’ T = S \\.\‘\}_}
_ door_closed "\ | Y (/| door_openead: Ve — AN
o yd y /| while_cooking / A1 b n';éfta .
P) . N 21_buttor
not_cooking$—~" R1_buttor start | f 'me"UPted—COOk'"gt_) ——— _while_beeping
_door_open \—/ // / | _door_open ——
/’ \ / j o - e ==
/ l\\. !'f" - — = ,’_../ =
/ ST —
), N~ —
) r_armed /7
beeper_off (« /\beepe 4 //,'_)'
\\"//',

beeper_on

© Vlad Estivill-Castro

79

Behavior Trees

e Model
Behavior Tree

o

)

© VI%@&iW’“émr&haﬂor Tree of the Microwave Oven

31

80

Aidde suonouisey “e1o/dx 3| WOl 82:22 18 600Z ‘S 499000 U0 POPEOJUMOQ *A LISHIAINN HLIA-ILD :0} poNw SN pasusoll pazuouyiny

€€

USAQ 9ABMOIDI 8y} Jo 98] Joineyag ubiseq ay] g ainbi4

Behavior Trees

e Design Behavior Tree

BEEPER
[1dle]

R4

[on]

POWERTUBE
[0ff]

[Open]

OVEN
+ >>PushButton <<

OVEN
- >>OpenDoor <<

|

(cont.)

(cont.)
— ~

OVEN OVEN
. >>PushButton<< B >>OpenDoor <<
LIGHT
[on]
DOOR
[Open]
OVEN
[Open]
. OVEN
+ [Cooking]
1]
OVEN OVEN OVEN
. >>OpenDoor << e >>PushButton << - >>Timed Out <<
DOOR @ BUTTON LIGHT
= [Open] = [Pushed] - [0ff]
RS POWER-TUBE TIMER R7 POWER-TUBE
+ [OFF] + [Extra Minute] o [Off]
TIMER OVEN A BEEPER
[Stopped] [Cooking] [Emit Warning Beep]

© Vlad Estivill-Castro

81

Comparison

e Far simpler

e Less states than
StateWorks,

Behavior Trees
= (less boxes and arrows)

e Far less crossings that Petri nets

e Behavior Trees miss the alarm
(beeper).

© Vlad Estivill-Castro
82

The interaction between
modules

e Shows up in the behavior tree.

e But does not happen in BECCIE

Systems Views Help

[T

(] system Explorer o“ & [||

#d E

icrowaveEngine

@ | O3 ReMicrowaveButton ' [| CIR: +d B | O3 Remicrowavesen #i IZl!n R:MicrowaveL ight

By =syste.

© & Light MicrowaveTimer
© £ MicrowaveOveny [SLEEP]
©- & Button
©- & Beeper
© & Oven
gi m\cvowavefpiltr\e i Tiver i Timer MicrowaveButton
icrowaveLig| 22 22 22 5 22 27add??
& & MicrowareBution 27c00k?? 22BUTTON: DISABLED?? 22add??
© & MicrowaveBell
© & MicrowaveTimer
i i i
[DECREMENT] [BROADCAST] [ENABLED]
MicrowaveTimer ~ MicrowaveTimer ||| MicrowaveButton
[SLEEP] 27BUTTON: ENABLED?? 27wait??

l

MicrowaveTimer
[SLEEP]

MicrowaveButton ©

MicrowaveEngine ~
[NOT_COOKING]

[DISABLED]
MicrowaveLight
Continue U"“‘"""‘ mer stat | Continue | MicrowaveEngine User Events | Status
| Iser Events lus
Step MicrowaveButton User Events | Status
User Event Status Step
cook —_—
Continue | MicrowaveBell
Pause - — .
User Events Status +LIGHT_ON
|~ | BUTTONDISABLED | :SLEEP step Interval
Interval Stop :NOT_COOKING e
:ENABLED M tus: Paused gl
Status: Paused Interval ~noTimeLeft
i Status: Paused 100 ms.
Int: 100 ms. Status: Running - .
o nt: 100 ms. interval | ZBELLSOFH
Int: 100 ms.
IStatus: Paused
int: 100 ms.
Pstart] £ becie_v1.0 B C:\WINDOWS\syste... |[[2] Behavior Engineeri... « 123AM

© Vlad Estivill-Castro

83

Module interaction
diagrams

e Perhaps of a global behavior tree

© Vlad Estivill-Castro 84

Outline

e Motivation

e Robotics and Software Engineering
e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e Summary

© Vlad Estivill-Castro 85

MDD raises the stakes from
earlier on
e Importance of Model-Checking

e Verify the model has correct behavior

e Importance of Failure Modes and Effects
Analysis (FMEA)

e Verify the model is robust and the impact of
failures is understood

e NO INTERMIDIATE DEVELOPMENT PHASES

e WHERE COMMON SENSE OF HUMANS WILL
PREVAIL

(c) Vlad Estivill-Castro 86

Sequential finite state
machines

3 1:START) 3 NEXT A
OnEntry: e TRUE OnEntry:
¥ =0 Xi=Y,
OnExit: 1.1: 1==(y+1)mod?2 OnExit:
y:=(x+1)mod2; “ly=0.
| x—peflioes, 1.2: 1==(x+1)mod2
W=[x+y)Imod2;
o S e S
N
4 MAYBE i
OnEntry:.
= TRUE
OnExit:
i
AN 4

Fig.1: A sequential finite-state machine is a model of a sequential program.

© Vlad Estivill-Castro 87

Operational formal semantics

{Initial state is set up}

current_state < So;

{Default arrival to a state is because a transition fired}
fired < true ;

{Infinite loop}
while (true) do
{On arrival to a state execute On-Entry activity}
if (fired) then
execute (current_state.on Entry) ;
end if

{If the state has no transitions out halt}

if () == current_state.transition List) then
halt;

end if

{Evaluate transitions in order until one fires or end of list}
out_Transition < current_state.transition_List.first;
fired < false;
while (out_Transition < current_state.transition List.end AND NOT
fired) do
if (fired <— evaluate (current_state.out_Transition)) then
next_state < current_state.out_Transition.target;
end if
out_Transition - current_state.transition_List.next;
end while

{If a transition fired, move to next state, otherwise execute Internal activities}
if (fired) then
execute (current_state.on Exit) ;
current_state < next_state;
else
execute (current_state.Internal) ;
fired < false;
end if
end while

Fig.2: The interpretation of a sequential finite-state machine.
© Vlad Estivill-Castro 88

Translate into a Kripke
structure (automatic)

Before Start
-

(After OnEntry Start w
x=0,y=1

Before Start

]

\ After OnEntry Maybe

%‘ x=1,y=1
L

\ After Boolean 1.1 Start False

(After Boolean Maybe Tru;

b=1 ,y=1, fired=true

i:lo,yﬂ Jfired=false

(After Boolean 1.2 Start True\
x=0,y=1,fired=true J

(Before Maybe w
x=1,y=1

Before Start

x=1,y=0
4 After OnEntry Next N
x=1,y=1
-

]

After Boolean Next True\

‘ x=1,y=1, fired=true

’;

Before Start

<
(After OnEntry Start

b:o,y=o
I

%

After Boolean 1.1 True

b:o,y=0, fired=true

~

Before Next

b(=1 ,y=1

/

© Vlad Estivill-Castro

I

89

The Microwave example
--- We can translate DPL to
propositions

(NOT_COOKING)
OnEntry: 'doorOpen && timel eft

(COOKING)

motion:=false
! (l1doorOpen && timel eft)

OnEntry:
motion:=true;
e

J
4 LIGHT_OFF A 4 LIGHT_ON A
OnEntry: doorOpen |l timelLeft OnEntry:
lights:=false lights:=true;
I (doorOpen |l timelLeft)
- / - /

© Vlad Estivill-Castro

90

Delicate detalils

--- external variables

e We convert each
sequential FSM coome

_ . motor !doorOpen timeLeftJ
state to a ringlet in o o el
the Kripke structure g

(after COOKING OnEntry w —

(a u to m atl C) \mOtor doorOpen fimetef J (After OnEntry NOT_COOKIN§/

Imotor doorOpen !timelLeft

%
i

(" BeforeNOT_COOKING |

(" evaluate NOT_COOKING) time enabled
Qnotor ldoorOpen timelLeft

(evaluate NOT_COOKING R

Qmotor doorOpen !timelLeft

I(!doorOpen| && timeleft)

!doorOpen|&& timeleft

(after fired false COOKING\

(fired false NOT_COOKING\
@otor IdoorOpen timeleft

Qmotor doorOpen ltimeLeft

© Vlad Estivill-Castro 91

Partial view of the overall
Kripke structure

~
(" BeforeNOT_COOKING | (" BeforeNOT_COOKING) [BetoreNoT_cOOKING [BetoreNoT_cO0KING
Qnotor IdoorOpen timeLef/t umotor IdoorOpen timeLef

I

Qnotor doorOpen !timeLeﬂ Umotor doorOpen !timeLef
J
// I—
motor:=false; moWse;

_—
_—

\% After OnEntry NOT_COOKII\RE

(Aftef OnEntry NOT_COOKING Qmotor IdoorOpen timelLeft /% Im

- Imotor doorOpen ltimeLeft)

door closed && time enabled

motox;=false;

time enabled

~

evaluate NOT_COOKING
Imotor !doorOpen timelLeft

(evaluate NOT_COOKING
umotor doorOpen !timeLeft

— |
ldoorOpen |&& timeleft

ldoorOpen |&& timeleft

N (fired True NOT_COOKINE
(" ftired false NOT_COOKING Qmotor IdoorOpen timeLef
)

Qmotor doorOpen !timeLeft)

[COOKNG

Qnotor IdoorOpen timeLey

92

© Vlad Estivill-Castro

Properties we can verify
(flex/bison/NuSMV/C++)

(antlr/NuSMV/C++)

Necessarily, the oven stops three transitions (in the
Kripke structure) after the door opens
e AG(doorOpen=1 & motor =1) -> AX AX AX (motor=0)

It is necessary to pass trough a state in which the door is
closed to reach a state in which the motor is working and

the machine has started.
e !E[! (doorOpen=0) U (motor=1 & ! (pc=BeforeNOT COOKING))]

Necessarily the oven stops three transitions in the Kripke

structure after the time elapses
e AG ((timeleft=0 & motor=1l) -> AX AX AX (motor=0)

© Vlad Estivill-Castro 93

Observations

e Kripke structures are efficient

e Linear states and transitions on the
states of FSM

e Exponential on # of variables

e Can prove properties of necessary
atomicity

e Coordination with the sensor

e Properties given any state at
commencement.

© Vlad Estivill-Castro

94

Outline

e Robotics and Software Engineering

e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e Summary

© Vlad Estivill-Castro 95

Industrial

Press Requirements

Requirements

Description

R1

The plunger is initially resting at the bottom with the motor off.

R2

When power is supplied, the controller shall turn the motor on,
causing the plunger to rise.

R3

When at the top, the plunger shall be held there until the
operator pushes and holds down the button. This shall cause
the controller to turn the motor off and the plunger will begin to
fall.

R4

If the operator releases the button while the plunger is falling
slowly (above PONR), the controller shall turn the motor on
again, causing the plunger to start rising again, without
reaching the bottom.

RS

If the plunger is falling fast (below PONR) then the controller
shall leave the motor off until the plunger reaches the bottom.

R6

When the plunger is at the bottom the controller shall turn the
motor on: the plunger will rise again.

(c) Vlad Estivill-Castro

96

The complete model

=== with peripherals for
model checking and FMEA

signalPlungerAtBottom

/0

Top senso;

ignalPlungerAtTop

PressAtTop w (PressAwayFromTop
OnEntry OnEntry
{ sensorAtTopActive=1;} {sensorAtTopActive=0;}

\ signalPlungerAtTop
PONR sensoro..u.

(lndicatingPressHIGHerThanPONRw ﬁndicatingPressLOWerThanPONa

@nEntry {low=0;} J E)nEniry {low=1;} J

(Indicating PressAwayFromBottom\

(IndicatingPressAtBottom\

~signalPlungerBelowPONB~

OnEntry OnEntry
{ sensorAtBottomActive=0;} {sensorAtBottomActive=1;}

\\\S|gnaIPIungerAtBottom/
bottom sensor

loperatorPusshingButton

(ButtonPressed | (ButtonlsReleased

0

OnEntry
{buttonPushed=0;}

~~.operatorPushingButton~

{ buttonPushed=1;}

OnEntry I

button

| signalMotorOn

N, @

(ElectricMotorOff

OnEntry
{motorOn=0;}

(ElectricMotorOn \

OnEntry
{ motorOn=1;}

signalMotorOn

operator

! signalMotorOn

(ElectricMotorOff

OnEntry \
bmotorOn:O;} J
motor

(ElectricMotorOn \

OnEntry
{ motorOn=1;}

signalMotorOn

x/.

PowerOn

PressClosed \ (OpeningPress \

OnEntry{extern PowerOn; b)nEntry {signalMotorOn=1;})
low=1; PowerOn=0;
signalMotorOn=0}

sensorAtTopActive

buttonPushed

4 .

IbuttonPushed && llow s)
OnEntry{signalMotorOn=0;} J
-

sensorAtBottomActive

controller

sensorAtBottomActive

’ / motorOn && sensorAtBottomActiﬁ

(PlungerAtBottom
&)nEntry{ pIungerRisingBeIowPONR=0;U

! motorOn

PlungerRisingBelowPONR

OnEntry{ plungerRisingBelowPONR=1)
OnExit{ plungerRisingBelowPONR=0;}

(PIungerFaIImgFast

! lpw

! motorO

PIungerRlsmgAbovePONR\ (PIungerFalllngSIow

DN motorOn
plunger
-

(c) Vlad Estivill-Castro 97

sensorAt[TopActive

! motorOn

Contrast with Behavior Trees [3

tttttt

HEEEN

sk

wwwwwwwww
NNNNNNNNNNNNN

mmmmmmmmmmmmm

H
:

Grunske et al
Softw. Pract. Exper.
2011; 41:1233—-1258

Incorrect modeling of sequence of events after
the press falls dOWn (c) Vlad Estivill-Castro o5

Industrial Press

e Property-1 “If the operator is not pushing the button and the
plunger is at the top, the motor should remain on”.
e G((operatorPushingButtom=0 & plunger_state=at_top) -> motorOn=1)

e Property-2 “If the plunger is falling below the PONR, a state
modelled by the plunger falling fast, then the motor should remain
off.”

e G(plunger_state=falling_fast -> motorOn=0)

o Property-3 “If the plunger is falling above the PONR, a state
modelled by falling slow, and the operator releases the button, the
motor should eventually turn on, before the plunger changes state.”

e G((plunger_state=falling_slow
& operatorPushingButton=0) ->(plunger_state=falling_slow U motorOn=1))

e Property-4 “The motor should never turn off while the plunger is
rising”.
e G(!((plunger_state=rising_below PONR |plunger_state=rising_above PONR)
&motorOn=0))

© Vlad Estivill-Castro 99

Demo

http://www.youtube.com/watch?
v=blUpMdH14pM

(c) Vlad Estivill-Castro 100

Properties demonstrated by
model-checking

Property-1 “If the operator is not pushing the button and
the plunger is at the top, the motor should remain on”.

Property-2 “If the plunger is falling below the PONR, a
state modeled by the plunger falling fast, then the motor
should remain off.”

Property-3 “If the plunger is falling above the PONR, a
state modeled by falling slow, and the operator releases
the button, the motor should turn on, before the plunger
changes state.”

Property-4 “Once the plunger is down, a new signal is
needed fto turn the motor on and raise the plunger again.”

(c) Vlad Estivill-Castro 101

Table level 1

Failures

Consequences

Pro

erty that fails

]

2

3

4

[Bottom sensor stuck indicating press away from bottom

X

Bottom sensor stuck indicating press at bottom

PONR sensor stuck on above PONR

PONR sensor stuck on below PONR

Top sensor stuck indicating press away from top

[Top sensor stuck indicating press at top

[Operator button stuck on pressed

Operator button stuck on released

Motor fails, leaves motor stuck on running

Motor fails, leaves motor stuck on off

Power switch button stuck to supply power

[Power switch button stuck to no power

«q X X XA

Mine Pump

Requirements

Description

R1

The pump extracts water from a mine shaft. When
the water volume has been reduced below the low-
water sensor, the pump is switched off. When the
water raises above the high-water sensor it shall
switch on.

R2

An human operator can switch the pump on and off
provided the water level is between the high-water
sensor and the low-water sensor.

R3

Another button accessed by a supervisor can
switch the pump on and off independently of the
water level.

R4

The pump will not turn on if the methane sensor
detects a high reading.

RS

There are two other sensors, a carbon monoxide
sensor and an air-flow sensor, and if carbon
monoxide is high or air-flow is low, and alarm rings
to indicate evacuation of the shaft.

(c) Vlad Estivill-Castro

103

Models are two FSMs
= the logic part not illustrated

4) alarmOn
— TNOJ—”R'E_G'NG / 1RINGING)
e OnEntry fbell=1} _
|OnExit{y _____ ___ OnExit {}
1§ S O
- J\ b
~alarmOn J

4 2 NOT_RUNNING A pumpShallGoOnJ 1 RUNNING)
OnEntry { motor=0;} OnEntry {motor=1;}

OnExith OnExith
{ {

\ J\ pumpShallGoOff /\ j

(c) Vlad Estivill-Castro 104

Mine Pump

Property-1 “If the CO2 is high, the alarm to evacuate personnel must ring.”
Property-2 “If the airflow is low, the alarm to evacuate personnel must ring.”
Property-3 “If the methane level is high, the pump must be turned off.”

Property-4 “If the supervisor turns the pump off when running, the pump will be turned
Oﬁ_ b

Property-5 “If the operator turns its switch off when the pump is running and the water
level is neither low nor high, then the pump motor goes off.”

Property-6 “The pump comes on when the water is above the high water sensor (and
the low-water sensor’s signal is consistent with this), unless the supervisor turn it off or
there is high methane.”

Property-7 “If the supervisor sets the switch as inactive and the pump is running when
the water is not above the high water sensor and the low-water sensor indicates a low
level, the pump comes off.”

Property-8 “If there is low methane, low water, and the pump is not running, but the
supervisor puts the switch to on, then the pump comes on.”

© Vlad Estivill-Castro 105

%Alarm.d

The IogiC name{ALARM}.
p a rt Of th e input{CO2SensorHigh}. input{airFlowLow}.

AO: {} => ~alarmOn.
models AT, COzSensortigh = alarmOn, AT>A0.
A2: airFlowLow => alarmOn. A2>A0.

output{b alarmOn,"alarmOn"}.

name {MINEPUMP}.
input{lowWaterSensorOn}. input{highWaterSensorOn}. input{operatorButtonOn}.
input{methaneSensorHigh}. input{indicateOn}. input{indicateOff}.

PO: {} = ~pumpShallGoOn.

P1: highWaterSensorOn => pumpShallGoOn. P1>PO.
P2: lowWaterSensorOn => ~pumpShallGoOn. P2>P1.
P3: {~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> pumpShallGoOn. P3>P2. P3>P0.
P4: {~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn }=> ~pumpShallGoOn. P4>P3.

P5: indicateOn => pumpShallGoOn.
P5>P2. P5>P4. P5>P0.
P6: indicateOff => ~pumpShallGoOn.

P6>P5.
P7: methaneSensorHigh => ~pumpShallGoOn. P7>P5. P7>P3. P7>P1.
NO: {} = ~pumpShallGoOff.
N1: {~indicateOn,lowWaterSensorOn} => pumpShallGoOff. NI>NO.
N2: {~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn }=> pumpShallGoOff. N2>NO.
N3: indicateOff => pumpShallGoOff. N3>NO.
N4: methaneSensorHigh => pumpShallGoOff. N4>NO.

output{b pumpShallGoOn,"pumpShallGoOn"}. output{b pumpShallGoOft,"pumpShallGoOff"}.

(c) Vlad Estivill-Castro 106

indicateOn |l
.\(NOT RINGING \ (llowWaterSen & (highWaterSensorOn rButtonOn)))
2 | && lindicateOff
(2 NOT_RUNNING && 'methaneSensorHigh 1 RUNNING \

CO2SensorHigh Il airFlowLow !CO2SensorHigh && lairFlowLow

OnEntry {bell=0;}

R OnEntry { motor=0;} OnEntry {motor=1;} _
OmExitdy _ ______ OnExit{} OnBxit ___ ____
& o ¢

(lindicateOn && I

1 RINGING
OnEntry {bell=1;}

e

2 INACTIVE)

OnEntry {extern supervisorButtonOn;

extern supervisorButtonOff;
extern supervisorButtonlnactive;

indecateOn=0; indicateOff=0;} 4
—————————————————————— \L;upervisorButtonOn && !supervisorButto

IsupervisorButtonOnN&& !supervisorButtonOff

(lowWaterSensorOn Il (lhighWaterSensorOn && !operatorButtonOn))
Il indicateOff
Il methaneSensorHigh

supervisorButtonOn && IsupervisorButtonOff (1 INDICTAE_ON \
OnEntry { indecateOn=1; }

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOff && IsuperyisorButtonOn

4 1 INDICTAE_OFF \/

OnEntry { indecateOff=1; }
| OnExit {indicateOff=0;} _ _
———————————————— supervisorButtonOn && !supervisorButtonOff
N\ Y

(c) Vlad Estivill-Castro 107

Mine Pump

e FMEA-performing failure modes and
effect analysis (FMEA)

Failures Consequences
Property that fails

112131415161 7]38

CO2-sensor stuck high
CO2-sensor stuck low X

Airflow sensor stuck high X

Airflow sensor stuck low

Bell stuck ringing

Bell stuck not ringing X1 X

Supervisor button stuck in on X X
Supervisor button stuck in off X1 X | X
Operator button stuck in on X

Operator button stuck in off X
Methane sensor stuck in high X X
Methane sensor stuck in low X

(High water) sensor stuck in on X X
(High water) sensor stuck in off X1 X
(Low water) sensor stuck in on X

(Low water) sensor stuck in off X1 X X
Motor stuck running X1 X | X X

Motor stuck not running X X

|

i 'y
L N .
’*—"d -
.
-

I

P

‘&

-
- 4 -
‘

Demo video

http://www.youtube.com/watch?
o a¥dmuL POJASU

109

The process

- Deploy
Requirements Build Model (C++1Java)
Safety
Properties
Validate
(nSMV)
Fault _
Injection Simulate
Refine FMEA
tables

(c) Vlad Estivill-Castro 110

Outline

e Motivation

e Robotics and Software Engineering
e Why State Machines and Why Logic
e Examples

e Comparison

e Model Checking

e Architecture

e Summary

© Vlad Estivill-Castro 111

How Is a robot architecture
organized

DELIBERATIVE REACTIVE

Purely Symbolic Reflexive

SFEED OF RESPONSE

-

PREDICTIVE CAPABILITIES

-t
‘DEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

Representation -dependent
Slower response

High-level intelligence (cognitive)
VYariable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

From “Behavior-Based Robotics” by R) AskirstiNHTfress, 1998 112

Robot control
(philosophies)

e Open Loop Control

e Just carry on, don’t look at the environment

e Feedback control

e Minimize the error to the desired state NO usc Of 10gIC
e Reactive Control
° Don’ t think, (re)act. Nno usSc Of common Sensc

e Deliberative (Planner-based/Logic -based) Control
° Think hard, act later.

e Hybrid Control
e Think and act separately & concurrently.

e Behavior-Based Control (BBC)
e Think the way you act.

no intelligence?

(c) Vlad Estivill-Castro 113

Software Architecture
e Agents / Robots

Reactive Reasoning/ Planning
Systems Systems
“Soft-Computing/ Symbolic Al

Computational Intelligence”

Hybrid System
Systems

© Vlad Estivill-Castro
114

A hybrid system

e The initial progress on logic and
reasoning within Al has largely been
discarded from mobile robotics in favour
of reactive architectures

e We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

e Plausible logic is the only non-monotonic
logic with an algorithm that detects loops

© Vlad Estivill-Castro
115

Reasoning

e Deriving conclusions from facts

e Apparently, a fundamental
characteristic of intelligence

e An expected aspect of intelligent
systems

e Withdrawing conclusions in the light
of new evidence is a capability
usually referred to as non-
monotonic reasoning

© Vlad Estivill-Castro

116

Non-Monotonic Reasoning

e A form of Common Sense

e Retract previous
conclusions in the light of
new evidence

Planes usually leave on time.
My flight leaves at 11:00 am.
Therefore, | should be at the airport at 9:00am.

My flight is cancelled.

A w0 Dd =

5. Makes no sense to take actions for going to the
airport early.

© Vlad Estivill-Castro

117

Result: Robotic Poker Player

e Integrate Environment
e Vision Complex
o Sound. | Interactive
recc?gnltlon Unpredictable
e Motion Control .
Competitive
Incomplete
Information

JN0 o
‘Z\‘*Y/;.’ 4\

T e— —

© Vlad Estivill-Castro
118

Previous Work
--- Software architectures for robotics

e Action - Sensor Model [Wooldridge 2002]
e Solution for control problem

e Golog [Vassos et al 2007]
e Aim for “Cognitive Robotics”

e Knowledge Middleware [Heintz et al 2007]
e Bridge low level sensor knowledge

e Robotic Architectures [Liu 2004]

e Generic Robot [Kim et al 2005]
Solution to platform dependence

© Vlad Estivill-Castro
119

Global Architecture

e Framework = Software Engineering

e Solves
Module Production / Workload problems
Software Development Methodology Problem

e Whiteboard (Blackboard [Hayes-Roth 1988])

e Solves

Knowledge representation problem
(facts with timestamp and author)

Module Interaction Problem

Also called a Data Distribution Service -Publisher/
Subscriber

e Domain Knowledge
e Logics
Belief revision / knowledge elicitation
e Solves
Validation / verification /specification

© Vlad Estivill-Castro
120

Our Architecture

e Solution to Control Problem

exclusive

External States

{

Behaviours (and sub-behaviours)

M

4

Actions

© Vlad Estivill-Castro

decomposable

priorities
asynchronous
associated with
actuators

121

Behaviour lllustration

e Robotic Soccer

e Simple Behaviour
/“BALL_CHASER N\

all_not_visible
search .
Do:spin Robotic Soccer
NG ball_visible - Complex
e Sub-behavior behaviour
/ BALL_CHASER_W_FINDER ™\
/" BALL_FINDER N e R, s i s
—_0.1s passed \
| look_around
) Dorrin BALL_FINDER
\ — s passed J %

© Vlad Estivill-Castro
122

Engineering the behavior

e Using visual descriptions of the
behaviour that incorporate formal logic

e Engineers use diagrams to model
artefacts.
e Software Engineering has traditionally

used diagrams to convey characteristics
and descriptions of software

BALL_CHASER

ball_not_visible._
Follow Search

t)o:walk Do:spin J
/. ball visible _

T~

© Vlad Estivill-Castro
123

SUOY POATIIR

GO_TO

!OQTIC_)N

KICK_TO

DO:find_opposite goal
and head_kick()

© Vlad Estivill-Castro

124

ﬂ\GENT

R :
Knowledge Base e];‘so?mg
ngine
Whiteboard State Machine

/ Interpreter

(

g\sensor wrapper| Lactuator wrapper

C

)

n

-

N\ (

perceptig,n/ \ action

ENVIRONMENT

© Vlad Estivill-Castro

\sml,emoe

125

Wrapping Sensors and
Actuators
e Portability

e Simulation / Virtualisation
e Validation

| Whiteboard 1

sensor 1 belief of
observing the ball

behaviour =

© Vlad Estivill-Castro

126

Wrapping Sensors and

Actuators
e Portability

e Simulation / Virtualisation

e Validation

~

Whiteboard 1

sensor 1

sensor 2

contradictory
information
about the ball

no behaviour J

Alternative
Example: Seeing both goals

© Vlad Estivill-Castro
127

Our approach

Vision and
Object Recognition

Non-monotonic
reasoning

Consistency
Module

Sensor fusion

© Vlad Estivill-Castro

128

Our approach

Consistency
Module

Non-monotonic logic that combines facts known
about the environment with what 1s reported
by the sensors

© Vlad Estivill-Castro
129

Wrapping Sensors and
Actuators

e Portability
e Simulation / Virtualisation
e Validation -
Reasoning
Whiteboard Engine
. e~
sensor 1 1 useful
information
sensor 2 about the ball

behaviour J

© Vlad Estivill-Castro
130

Wrapping Sensors and
Actuators

e Fusion in time

~

sensor 1

time ¢,

sensor 1

time ¢,

Reasoning
Whiteboard Engine

% _F

1 useful

information
about the ball

behaviour J

© Vlad Estivill-Castro
131

Independent and
Asynchronous

e Reasoning Engine

Reasoning Engine

Control

© Vlad Estivill-Castro

132

Reasoning Engine

e Template Method

1. All facts are labelled unknown

2. Extract facts from whiteboard

3. Execute predicates that are more efficient in
imperative languages

4. Run the necessary queries /proofs on DPL

© Vlad Estivill-Castro

133

Interpret a behavior

STATE ID 1 lo glc_output_z(action 2

Do:
ACTIVITY _

logic output 1/action 1

logic output 3/action 3

STATE ID 2
Do:
ACTIVITY _

© Vlad Estivill-Castro
134

Behavior Interpreter (version 1)

void fsmMachine :: execute ()

{ vector <fsmState*>::iterator it;
it=theStates.begin();
fsmState* current = (*it);

int currentID = current -> getID(); : Get initial State

cerr << Initial State is State Number " << current->getID()<< "\n ;

while (1) // run for ever

{// Evaluate labels of transitions going out of current state

// and may change state Always

p&m"l"ranei tion n itTrancitionge.

p_itTransitions = current->theFirstTransition(); o, .
[——————— Get first transition
while ((!transitionFired) && (NULL!= p_itTransitions))

{cout << "Evaluate : "

<<((p_itTransitions)->getExpression()) -> getWhatToEvaluate() << "\n";
cout << "Does this expression evaluate to true (Y/N)2\n";

char response; cin >> response;
if ('Y'== response) // we need to execute the transition
{ current= p itTransitions->getTarget();

currentID=current->getID(); Evaluate

// break out

transitionFired = true;

}

tlse /) advance to next transition Move to new state

{ p_itTransitions = current ->theNextTransition();

}

s o e e and break if true

77 Send message to ACtuators o My AcCtivity
// by posting to whitebaord

cout << " After evalaution the state is : " <<find(current->getID())->getID() << "\n";

L] L]
cout << " We are " << (current->getActivity())->getWhatToDo() << "\n"; DO aCtIVIty

Y

s

© Vlad Estivill-Castro

135

© Vlad Estivill-Castro 136

Research output derived from
RoboCup Standard platform and
RoboCup@Home

/publications.php .

Estivill-Castro, V. and Lovell, N. *“Improved Object Recognition — The RoboCup 4-legged league’’ Proc. 2003 IDEAL 4™ Int. Conf. on Intelligent Data Engineering and Automated
Learning. Hong Kong Springer-Verlag LNCS. Vol. 2690 p.1123-1130. (2003).

Bartlett, B. Estivill-Castro, V. Seymon, S. and Tourky, A. *'Robots for Pre-orientation and Interaction of Toddlers and Preschoolers who are Blind" Proc. 2003 Australasian Conf.
on Robotics and Automation. 2003 CSIRO's QCAT CD-ROM.

Bartlett, B. Estivill-Castro, and V. Seymon, S. 'Dogs or Robots - Why do we see them as robotic pets rather than canine machines?" 5th Australasian User Interface Conference
(AUIC2004), Dunedin. CRPIT, Vol. 28. Ed. p. 7-14.

Lovell, N. "Real-Time Embedded Vision System Development using AIBO Vision Workshop 2" Proc. of the Mexican Int. Conf. on Computer Science (ENC), IEEE Computer Society
Press. 160-167 (2004).

Fenwick, J. and Lovell, N. "Linear Time Construction of Vectorial Object Boundaries" 6th JASTED Int. Conf. on Signals and Image Processing (SIP), August 2004, Hawaii, USA
Estivill-Castro, V. and Lovell, N. "A Descriptive Language for Flexible and Robust Object Recognition" 8th International RoboCup Symposium, July 2004, Lisbon, Portugal

Estivill-Castro, V. and McKenzie B. "Hierarchical Monte-Carlo Localisation Balances Precision and Speed" Proc.2004 Australasian Conference on Robotics and Automation.
December 6-8, 2004 in Canberra at Australian National University. CD-ROM.

Lovell, N. "I[llumination independent object recognition." In Noda, 1., Jacoff, A., Brendenfeld, A., Takahashi, Y., eds.: Proc. Robocup 2005 Symposium, Springer-Verlag . LNCS 4020
(2006), p. 384-395.

Lovell, N. "Fast Posture and Object Recognition using Symmetries" Proc. 2005 Australasian Conference on Robotics and Automation. December 5-7, 2005 in Sydney at University of
New South Wales. Claude Sammut (editor) CD-ROM .

Billington, D., Estivill-Castro, V., Hexel, R., and Rock A., "Non-monotonic Reasoning for Localisation in RoboCup" Proc. 2005 Australasian Conference on Robotics and
Automation. 2005 in Sydney at University of New South Wales. CD-ROM.

J. Fenwick and V. Estivill-Castro ""Optimal Paths for Mutually Visible Agents" The 16th Annual Int. Symposium on Algorithms and Computation. Deng, X. and D.-Z. (Eds.) 2005,
Sanya, Hainan, China. Springer Verlag LNCS 3827, pages 869-881.

V. Estivill-Castro and S. Seymon "Mobile Robots for an E-mail interface for People who are Blind" Robocup Int. Symposium 2006. G. Lakemeyer, E. Sklar , D. G. Sorrenti and T.
Takahashi eds. Springer Verlag LNCS. Vol 4434, pages 338-346 2007.

Lovell, N. “Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots”, PhD thesis, Griffith University, 2007.

D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, '"Using Temporal Consistency to Improve Robot Localisation" Robocup International Symposium 2006. Springer Verlag
LNCS. Vol 4434, p. 232-244, 2007.

J. Fenwick and V. Estivill-Castro. *"Mutually visible agents in a discrete environment" The Thirtieth Australasian Computer Science Conference (ACSC-2007), Ballarat. CRPIT,
Vol. 62. p. 141-150.

D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Non-monotonic Reasoning on Board a Sony AIBO” Soccer Robotics. P. Lima editor. IS
N. Lovell, and V. Estivill-Castro “Color Classification and Object Recognition for Robot Soccer Under Variable Illumination” Soccer Robotics. P. Lima editor.

© Vlad Estivill-Castro 137

e Motion control

Ramifications o pick up the cards /

move bricks or chips
e Image processing

e recognize opponents
partners

e actions / gestures
e cards/ figures
e Agent technology

e reasoning / game play/
knowledge
representation

e Multi-modal

e sound/ motion/
speech

2= o Virtual games / tele-
presence

© Vlad Estivill-Castro 138

Focusing on a prototype
leads to links with other
areas

e Research in education
e Meaningful play is learning

© Vlad Estivill-Castro 139

Robots provide to the blind what
was lost when text interfaces
where replaced by GUIs
e Mobile robots for an E-malil interface for
people who are blind

e Provide a multi-modal mobile interface
for ambient intelligence

e Enable mnemonic commands
e Allow rapid learning

Summary

State diagrams

e Widely used, solid tool to communicate
requitements, behaviors

The reactive part

Transitions are labeled by questions to an
inference engine

e Solid tool to model the declarative part

Simplify the burden by using non-monotonic
logics

e Defaults

e lterative refinement

Loosely coupled architecture

e Platform independent

e Simulation / Validation / Model checking

© Vlad Estivill-Castro

141

Summary

e Ensure quality and safety
e software in embedded controllers

e Logic-labeled vectors of FSM, sequentially
scheduled

e provide more succinct models
validated

e with clear semantics
e that

can be simulated

can be exported to various platforms

= (model-driven development)

can be model-checked

= (in a matter of seconds, as opposed to days of CPU time)
can be examined with fault-injection

© Vlad Estivill-Castro 142

© Vlad Estivill-Castro

143

