
1 

 
 
Engineering the behavior of Robots: 
Simulation and Model-Checking for 
Embedded Systems and Robotics 

Vladimir Estivill-Castro 
  

Griffith University 
IIIS 

(in collaboration with many others, 
particular thanks to members of the MiPAL) 

© Vlad Estivill-Castro 



Outline 
 
l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Illustrations 

l  Summary 2 © Vlad Estivill-Castro 



Outline 
 
l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Illustrations 

l  Summary 3 © Vlad Estivill-Castro 



  
 
 
 

Implications for:    
     

Safety 
Software Engineering for Robots 

Reasoning 
Human Computer Interaction 

 

4 Share the Interest for 
Robots in Human 

Environments 

© Vlad Estivill-Castro 



  
 
 
 

for:        
Model driven engineering 

Simplicity to program 
Keep it simple, stupid (KISS)|80/20 rule 

High cohesion, Low Coupling 
(Distributed Components) 

(Data Distribution Service -Publisher/
Subscriber) 

Platform Independence 
Composability of components 

5 

Share the Interest 

5 © Vlad Estivill-Castro 



A central project for intelligent 
integrated systems 
l  The development of autonomous mobile 

robots for multi-modal interaction with 
humans 

l  leading to  
l  useful applications integrating 

l  agent technology, HCI, AI, image processing, robotics, vision, planing, 
problem solving, game theory, machine learning, voice recognition, 
sensor fusion, 

l  emotional reactions and advanced research in 
areas of intelligent integrated systems 

l  participation with prototypes in international 
benchmarks that have academic and industrial 
recognition 
l  RoboCup Soccer, RoboCup@Home, Agent-Poker, Open Game Play 

6 © Vlad Estivill-Castro 



7 

•  Intelligent buildings and Sensitive 
computing 

•  Computing environment intended to assist the 
user for retrieving, organizing and interpreting 
available information resources by augmenting 
and extending the sensory as well as the cognitive 
capabilities of the user  

• Ambient Intelligence / Tele-presence 

Hypothesis (1) 
l  In the not so distant future humans will 

be surrounded by all sorts of `intelligent 
machines’ 

 

© Vlad Estivill-Castro 



8 

Hypothesis (2) 
l  The sector of the human population that 

is to benefit the most from `robots around 
us’ are people with disabilities, sick and 
rehabilitation patients, the elderly and 
pupils 
l  If technology is to reflect an advance society 

it should make an impact on improving 
l  the life of its weak/disadvantaged/untrained 

members 

© Vlad Estivill-Castro 



9 

Hypothesis (3) 
l  A convergence is looming on 

Information and Communication 
Technologies 
l  Mobile phones, PDAs, Wireless/

Internet and Intranets through 
computer watches 
l  “the Cloud” 

l  Wearable computers 

© Vlad Estivill-Castro 



10 

Hypothesis (4) 
l  There is a shift from “accessible 

computing” to “user centered design” 
in the Human-Computer Interaction 
community 
l  Accessibility 

l  Providing accessibility means removing barriers that 
prevent people with disabilities from participating in 
substantial life activities 

l  UCD 
l  Focusing on the product's potential users from the 

very beginning, and checking at each step of the 
way with these users to be sure they will like and be 
comfortable with the final design.  

© Vlad Estivill-Castro 



11 

Hypothesis (5) 

l  integrates advances 
from different fields 

l  shows deployment of 
the technology in 
demonstrable 
prototypes 

  The fields of artificial intelligence, robotics, 
machine learning, human-computer interaction 
are advancing in research that 
 

© Vlad Estivill-Castro 



12 

Hypothesis (6) 
 The interface may not be a 
robot 
l  The actuators and sensors can be 

remote 
l  Not all of them on board of the robot 
l  The control may not be on board of the 

mobile components 
l  But the technologies developed will have 

use in all the applications emerging from 
this flexibility. 

© Vlad Estivill-Castro 



13 

Hypothesis (7)  
Agent technology is 
influencing everyday life 
l  Computer Games 

l  Age of Empires 
l  Age of Mythology 

l  Xbox/PlayStation/
Wii 

l  Tamagochi/Nintendo 
DS 

l  Environments 
l  Dofus 
l  Runescape 
l  Club Penguin 
l  2nd Life 

l  Automatic assistants 
l  eBay 

© Vlad Estivill-Castro 



14 

What does robotics 
provide? 

l  Mobility/autonomy 

l  Embodiment 
l  Physical presence 

l  Teams of robots 
l  Collective abilities / remote 

control 

© Vlad Estivill-Castro 



15 

Robotics has penetrated 
 the home market 

l  Toys 
l  Lego MindstormsTM 

l  Cindy Smart TM  

 

© Vlad Estivill-Castro 



16 

Robots on children’s 
bedrooms 

© Vlad Estivill-Castro 



17 

Robotics has penetrated  
human environments 
l  Home artifacts 

l  The EUREKA Robo VacTM 

l  Electrolux Trilobite TM 

l  Guides for  
l  visitors in museums and 

the elderly 
l  visitors in airports  

 

© Vlad Estivill-Castro 



18 

Autonomous Vehicles / 
Robotic Cars are 
penetrating the Urban 
Environment 

© Vlad Estivill-Castro 



19 

Robots are penetrating the 
media 

l  News readers 
l  Booking agents, 

traveling agents, 
eCommerce 

l  Robotic interfaces are 
more human-like 
l  The uncanny valley 

l  Environments/Virtual 
reality/Attractions 
l  Opponents are simulated 

agents 
l  Is the matrix possible? 

l  Movies/Special effects 
l  Military 
l  Entertainment parks 

© Vlad Estivill-Castro 



Outline 
 
l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Illustrations 

l  Summary 20 © Vlad Estivill-Castro 



21 

How do you describe the 
behavior as an everyday 
person? 
(to your robot / companion) 
l  Humans describe requirements 

l  Of the systems 
l  Of the capacities of the system 

l  Realizing the human description is a common theme 
between 
l  Software Engineering 

l  Artificial Intelligence 

© Vlad Estivill-Castro 



©  V. Estivill-Castro 22 

How do you describe the 
behavior as an everyday 
person? 
(to your robot / companion) 
l  In a description 

l  There is a declarative part 
l  a context, a description 

§  ontology (?) knowledge representation? 
l  If formal (unambiguous), needs a logic 

l  There is a state - transition - action part 
l  Formally, an algorithm in a formal model of 

computation 
22 © Vlad Estivill-Castro 



23 

Specifying a behavior 

l  It should be natural to the human 
l  For the declarative parts, 

mechanisms used by humans should 
be provided 
l  common sense reasoning 
l  non-monotonic logic 

l  Mechanism should be  
l  Simple to learn 
l  Formal to remove ambiguity 
l  Implementable (interpreter/compiler) 

© Vlad Estivill-Castro 



24 

Illustration 

l  Naturally to develop rules systems where the 
new rules redefine exception to the previous 
ones 

l  3 laws of robotics 
1.  A robot may not harm a human 
2.  A robot must obey a human unless it 

contradict law 1 
3.  A robot must protect itself unless 

contradicts rule 1 or 2 
l  Ripple down rules (Knowledge elicitation) 

l  Rules are defined and new rules are 
subsequently added to revise the cases not 
covered by the more general rules 

l  A tree that is a hierarchy of rules 
§  No formal reasoning 

© Vlad Estivill-Castro 



25 

Proposal for engineering the 
behavior 

l  Using visual descriptions of the behaviour that 
incorporate formal logic 

l  Engineers use diagrams to model artefacts. 
l  Iterative refinement 

l  Software Engineering has traditionally used 
diagrams to convey characteristics and 
descriptions of software 

l  High-level tools 
l  Observations: 

l  Specifying behaviour unambiguously is 
difficult 

l  Interpret human descriptions of behaviour is 
also difficult 

© Vlad Estivill-Castro 



26 

For Requirements 
Engineering 
l  Use CASE (Computer Assisted Software 

Engineering) 
l  graphical models 
l  code generation 

l  Model Driven Engineering 

l  Bottom-up approach / Iterative refinement 
l  Elude the very large syntax and semantics 

of OMG modeling (standard) languages 
l  for example : UML [2.0] 

© Vlad Estivill-Castro 



27 

Requirements Engineering 
l  Minimize software faults 

l  disambiguate requirements 
l  completeness 
l  consistency 

l  validate requirements 
l  correctness 

l  model / simulate requirements 
l  platform independence 

l  traceability of evolution / change in requirements 
l  communicate requirements 
l  implement requirements (automation) 

© Vlad Estivill-Castro 



Model-Driven Engineering 
l  Approach in Software Engineering 

l  Construct software / Safe Software / Quality Software 
l  models rather than programs are the principal outputs of 

the development process (Sommeville, 2009).  
l  The programs that execute on a hardware/software 

platform are then generated automatically from the 
models.  

l  Raises the level of abstraction  

(c) Vlad Estivill-Castro 28 

Platform
independent

model

Java program

C# code
generator

Java code
generator

J2EE Translator

.Net Translator C# program

J2EE specific
model

.NET specific
model



29 

Modelling behaviours 
•  We introduce diagrams that use logic to 

describe behaviour. 
•  Our proposal extends techniques like  

•  Finite State Machines 
•  , Petri Nets  
•  Object Models for Object Orientation, and  
•  Behaviour Trees. 

•  We model the relationship between several 
inputs as asserted conditions about the 
environment that an agent can reason about 
(using logics) and resolve with respect to 
knowledge of the environment 

•  Computer Assisted Software Engineering 
enables the manipulation of modelling 
diagrams and the generation of code from the 
models. © Vlad Estivill-Castro 



30 

Formal Logics (declarative) 

For the description of the behaviour  
Advantages 
1.  Descriptions are unambiguous 

•  Descriptions have specific meanings. 
2.  Ease of description - descriptive 

•  Focus is on what the behaviour does, not how it happens 
3.  Can be translated to implementations in imperative languages 

like C++, Java 
4.  Understandable by humans 

•  Can be the result of a knowledge engineering exercise 
•  Usually humans describe exceptions and laws governing 

many situations in this way  
Disadvantages 
1.  Can lead to undecidable settings or other difficulties for 

implementation, like very large and/or inefficient programs 

© Vlad Estivill-Castro 



31 

Illustrating state diagrams 

l  Exclusivity 
ci∧cj = false ∀ i≠j 

l  Exhaustivity 

∨i=1
n

 ci = true 

s1 si c1=eventu 

s1 sj c2=eventv 

si sp ct=eventx 
© Vlad Estivill-Castro 



32 

State diagrams (action) 

l  Correspond naturally to 
the notion of state 
machine 

l  Already very common 
in many human-
computer interfaces 
l  elevators/mobile 

phones/ washing 
machines 

l  Formal semantics 
(formal mathematical 
object) 

© Vlad Estivill-Castro 



33 

State diagrams (action) 
l  Widely used in Software Engineering 

l  OMT, then UML, Shlaer-Mellor 

l  Widely successful tool in industry 
l  StateWorks, executableUML 

© Vlad Estivill-Castro 



34 

State Machines 

l  Some extension and equivalences to 
other formal models 

l  Multi-threaded State Machines 
l  Petri Nets 
l  Distributed computation 
l  Team automata 
l  Security formalisms (verification) 

© Vlad Estivill-Castro 



Behavior Trees 
l  Formalism of requirements engineering 
l  Similar to ‘Use Case’ Modeling 
l  Tool for `Behavior Engineering’ 

l  Capture the threads of behavior from 
the linear description 

l  Textual to formal 

R1 R2 R3 

35 © Vlad Estivill-Castro 



36 

Convert State Diagram 
into Behaviour Tree 

l  Draw down by 
breadth-first search 

l  Already visited nodes 
are cloned but not 
explored again 

1 
2 

4 

3 

5 
6 

1 
2 

3 
6 

1 

3 
4 

5 

© Vlad Estivill-Castro 

Potentially equivalent  
modeling approaches 



37 

Convert a node in the tree to 
a module in Plausible Logic 

1.  name(Node). 
2.  type State_Type(S_0, S_1,...,S_k). 
3.  ∨{State(S_0),…,State(S_k)}. 
4.  ∨{¬State(S_i),¬State(S_j)}. (∀ i ≠ j) 
5.  input{“e_i”}. (for i=1,…,k} 
6.  Default: ⇒ State(S_0). 
7.  Switch_S_0_S_i:{“e_i”} ⇒ State(S_i). 

(for i=1,…,k) 
8.  Switch_S_0_S_i > Default. (for i=1,…,k) 

© Vlad Estivill-Castro 

Potentially equivalent  
modeling approaches 



38 

Using the priority relation 

1.  Switch_S_0_S_i:{“e_u”} ⇒ State(S_i). 
2.  Switch_S_0_S_i > Default. 
3.  Switch_S_0_S_j:{“e_v”} ⇒ State(S_j).  
4.  Switch_S_0_S_j > Default. 

5.  Switch_S_0_S_p:{“e_v∧e_u”} ⇒ State(S_p). 
6.  Switch_S_0_S_p > Default. 
7.   Switch_S_0_S_p > Switch_S_0_S_i. 
8.   Switch_S_0_S_p > Switch_S_0_S_i. 

eu 

ev 

eu∧ev 

S_0 
S_i 

S_j 

S_p 

© Vlad Estivill-Castro 

Flexibility of 
default reasoning 



39 

Hybrid System for Intelligent 
and Integrated System 
l  Reactive System 

l  State Machine 

  Reasoning 
•  Non-Monotonic 

Logic 

S1 S2 

1.  name(Node). 
2.  type State_Type(S_0,..,S_k). 

3.  ∨{State(S_0),…,State(S_k)}. 
4.  ∨{¬State(S_i), ¬State(S_j)}. 

(∀ i ≠ j) 
5.  input{“e_i”}. (for i=1,…,k} 

6.  Default: ⇒ State(S_0). 

7.  Switch_S_0_S_i:{“e_i”} ⇒ 
State(S_i). (for i=1,…,k) 

8.  Switch_S_0_S_i > Default. 

event 

© Vlad Estivill-Castro 



40 

Behaviour Design 
l  Software Engineering 

l  visual models of behaviour 

STATE STATE 

event 

  Behaviour Specification 
•  by humans 

  Human-Robot Interaction 
Human-Robot 
Collaboration 

statement from non-monotonic logic 

© Vlad Estivill-Castro 



Event-Driven 
Most common approach 
l  System is in a state 

l  waiting 
l  does not change what is 

§   doing/happening  
l  until event arrives 

l  Events change the 
state of the system 

(c) Vlad Estivill-Castro 41 

Attack 

Defen
d 

gain 
posses
sion 

loose 
possessi
on 



Logic-labeled FSMs 
l  A second view of time (since Harel’s 

seminal paper) 
l  Machines are not waiting in the state for 

events 
l  The machines drive, execute 
l  The transitions are expressions in a logic 

l  or queries to an expert system 

(c) Vlad Estivill-Castro 42 

attack for a 
bit 

is the game over? 

I am injured? 

did the team lost possession? 

are the fans misbehaving? 



% BallConditions.d!
!
name{BALLCONDITIONS}.!
!
input{badProportionXY}.!
input{badProportionYX}.!
input{badDensityVsDensityTolerance}.!
!
BC0: {}           => is_it_a_ball.!
BC1: badProportionXY  =>  ~is_it_a_ball. BC1 > BC0.!
BC2: badProportionYX  =>  ~is_it_a_ball. BC2 > BC0.!
BC3: badDensityVsDensityTolerance  =>  ~is_it_a_ball. BC3 > BC0.!
!
output{b is_it_a_ball, "is_it_a_ball"}.!

Example from robotic soccer 
ORANGE_BLOB_FOUND

OnEntry { extern blobSizeX; extern blobSizeY;
        extern blobArea; extern blobNumPixels;
        toleranceRatio = 2; densityTolerance  = 3;
        badProportionXY = blobSizeX/blobSizeY > toleranceRatio;
        badProportionYX = blobSizeY/blobSizeX > toleranceRation;
        badDensityVsDensityTolerance = 
            blobArea / blobNumPixels > densityTolerance;
}
OnExit {}
{}

BALL_FOUND

is_it_a_ball

(c) Vlad Estivill-Castro 43 



Conceptual cycle 
l  Similar to a ‘reactive-architecture’ 
l  Similar to a whiteboard 

architecture 

(c) Vlad Estivill-Castro 44 

w
h
i
he
boar
d 

sensor 1 

sensor space of the robot 

sensor 2 

sensor 3 

sensor 4 

sensor n 

CONTROL AT ITS OWN TIME 
 

Do the right thing by the state of the world 

t
he
ir     
ow
n      
t
ime 

•  Deliberative control 
architecture by logics 

•  Behavior-base control by 
vectors of FSMs 



Outline 
l  Motivation 

l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Illustrations 

l  Summary 
45 © Vlad Estivill-Castro 



46 

Prototype demonstrated at 
RoboCup@Home 2007 

ALARM 

It’s cool 

© Vlad Estivill-Castro 



47 

A logic for looking after 
the lady 

1.   Usually there is no reason for alarm 
2.  The absence of owner for a long time is reason for alarm (this 

takes precedence over rule 1) 
3.   Lying usually results from a fall  
4.  A fall is usually a reason for alarm (this takes precedence over 

rule 1) 
5.  Being on bed is not a fall (this takes precedence over rule 4) 
6.  Lying for a long time means owner is not getting up. 
7.  Not getting up is a reason for alarm (this takes precedence 

over rule 1) 
8.  If it is night, it is fine not to get up (this takes precedence over 

rule 7) 
9.  If there is a stranger looming over the lady, it is reason for an 

alarm (takes precedence over rule 1) 
10. Owner can’t be absent while on bed, or lying or lying for a long 

time. 
11. Owner can’t be lying for a long time without lying for a short 

time. © Vlad Estivill-Castro 



48 

Diagrams to illustrate rule 
relations 

© Vlad Estivill-Castro 



49 

A diagram for a poker player 

© Vlad Estivill-Castro 



50 

Code generated (example) 
/* This is code Generated by the DPLGenerator 
** This program was made by Mark Johnson 2008 (MiPAL) 
** File Opponent.d 
*/ 
 
name{Opponent}. 
 
type Opponent(x<-Opponent_Type). 
 
type Opponent_Type = {Loose_Passive, Loose_Aggressive, Tight_Passive, Tight_Aggressive}. 
 
\/{Opponent(Loose_Passive), Opponent(Loose_Aggressive), Opponent(Tight_Passive), Opponent(Tight_Aggressive)}. 
 
\/{~Opponent(Loose_Passive),~Opponent(Loose_Aggressive)}. 
\/{~Opponent(Loose_Passive),~Opponent(Tight_Passive)}. 
\/{~Opponent(Loose_Passive),~Opponent(Tight_Aggressive)}. 
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Passive)}. 
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Aggressive)}. 
\/{~Opponent(Tight_Passive),~Opponent(Tight_Aggressive)}. 
 
input{"aggressiveness_GT_aggressiveness_Threshold"}. 
input{"tightness_GT_tightness_Threshold"}. 
 
Default_Opponent: {}=>Opponent(Loose_Passive). 
 
Switch_aggressiveness_GT_aggressiveness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold"} => Opponent(Loose_Aggressive). 
Switch_aggressiveness_GT_aggressiveness_Threshold > Default_Opponent. 
 
Switch_tightness_GT_tightness_Threshold: {"tightness_GT_tightness_Threshold"} => Opponent(Tight_Passive). 
Switch_tightness_GT_tightness_Threshold > Default_Opponent. 
 
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold", 

"tightness_GT_tightness_Threshold"} => Opponent(Tight_Aggressive). 
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Default_Opponent. 
 
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_tightness_GT_tightness_Threshold. 
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_aggressiveness_GT_aggressiveness_Threshold. 

© Vlad Estivill-Castro 



51 

Earlier Process 
to  
Embed Design  
into the  
AIBO Robot 

DESIGN 

Java 
 
 

C++ 
simulator 

C++ 
for AIBO 

Haskel implementation 
of non-monotonic logic 

Competition 
statistics 

DCL 
code 

Java 
code 

C++ glue 
code 

© Vlad Estivill-Castro 



52 

Systems interacting with 
humans 

© Vlad Estivill-Castro 



53 
© Vlad Estivill-Castro 

http://www.youtube.com/watch?v=QDxzPzuvFK0&feature=player_embedded 



© Vlad Estivill-Castro 54 

GetUpFromFron
t

GetUpFromBac
k

Duration

GetUpFromFron
t

GetUpFromBac
k

Duration

GetUpFromFron
t

GetUpFromBac
k

Duration

Pause

TheyScore

WeScore

ForcedToBlueKi
ckOff

ForcedToRedKi
ckOff

INITIAL

CHANGE_KICK
_OFF

CHANGE_TEAM

READY SET

PENALIZED
PLAYING

FINISHED

initialReceived

readyReceived

shortChestButtonPressed

finishedReceived

penaltyReceived

ReadyOurGoal

ReadyTheirGoal

robotFallenBack

robotFallenForward

playingReceived

shortChestButtonPressed

ReadyOurGoal

ReadyTheirGoal

readyReceived playingReceived

robotFallenBack

robotFallenForward

setReceived

UDPsaysRedKickOff

UDPsaysBlueKickOff robotFallenForward

robotFallenBack

TRUE

TRUE

leftFootBumpPressed

rightFootBumpPressed

shortChestButtonPressed

readyReceived

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

rst_n

GameController Version 1
5/05/11 8:32 PM

FSM+DPL for top behaviour at 
competition in RoboCup 2011 
Istanbul, Turkey 



© Vlad Estivill-Castro 55 

GetUpFromFron
t

GetUpFromBac
k

Duration

GetUpFromFron
t

GetUpFromBac
k

Duration

GetUpFromFron
t

GetUpFromBac
k

Duration

Pause

TheyScore

WeScore

ForcedToBlueKi
ckOff

ForcedToRedKi
ckOff

INITIAL

CHANGE_KICK
_OFF

CHANGE_TEAM

READY SET

PENALIZED
PLAYING

FINISHED

initialReceived

readyReceived

shortChestButtonPressed

finishedReceived

penaltyReceived

ReadyOurGoal

ReadyTheirGoal

robotFallenBack

robotFallenForward

playingReceived

shortChestButtonPressed

ReadyOurGoal

ReadyTheirGoal

readyReceived playingReceived

robotFallenBack

robotFallenForward

setReceived

UDPsaysRedKickOff

UDPsaysBlueKickOff robotFallenForward

robotFallenBack

TRUE

TRUE

leftFootBumpPressed

rightFootBumpPressed

shortChestButtonPressed

readyReceived

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

rst_n

GameController Version 1
5/05/11 8:32 PM

FSM+DPL for top behaviour at 
competition in RoboCup 2012 
Mexico City 

export MASTER=StateMachineStarter 
export FSMS="SMButtonChest 
 SMButtonLeftFoot 
 SMButtonRightFoot  
SMRobotPosition  
SMGetUp  
SMGameController  
SMPlayer  
SMGoalie  
SMBallFollower  
SMKicker  
SMHeadBallFindAndTrack  
SMHeadScan  
SMRightFootControl  
SMLeftFootControl  
SMHeadGoalFindAndTrack  
SMBallSeeker  
SMReady" 



© Vlad Estivill-Castro 56 



Simulator 

(c) Vlad Estivill-Castro 57 http://www.youtube.com/watch?v=FpVUSrvLI0c&feature=relmfu 



On-line debugging and 
simulation 

(c) Vlad Estivill-Castro 58 



Conceptual cycle 
l  Similar to a ‘reactive-architecture’ 
l  Similar to a whiteboard architecture 

(c) Vlad Estivill-Castro 59 

under several CPU 
rate for the sensors 

w
h
i
he
boar
d 

sensor 1 

sensor 2 

sensor 3 

sensor 4 

sensor n 

CONTROL AT ITS OWN TIME 
 

Do the right thing by the state 
of the world 

FULL REACTIVE 
DO THE RIGHT THING 

FOR MEMORY AND 
SENSOR SPACE 

w
h
i
he
boar
d 

sensor 1 

sensor 2 

sensor 3 

sensor 4 

sensor n 

CONTROL AT ITS OWN 
TIME 

 
Do the right thing by the state 

of the world 
FULL REACTIVE 

DO THE RIGHT THING 
FOR MEMORY AND 

SENSOR SPACE 

sensor C1 

sensor C2 



60 

A classical example 
l  The One-Minute Microwave Oven 

l  literature approach 
l  behavior specification of all objects of a class 

l  Shlaer-Mellor 
l  StateWorks 
l  Behavior Trees 
l  PetriNets 
l  SCXML - State Chart XML: State Machine 

Notation for Control Abstraction 
l  Realistic - scaled down version of an X-Ray 

machine 

© Vlad Estivill-Castro 



One Minute Microwave 
l  Widely discussed in the 

literature of software 
engineering 

l  Analogous to the X-Ray 
machine 
l  Therac-25 radiation 

machine that caused harm 
to patients  

l  Important SAFETY 
feature 
l  OPENING THE DOOR 

SHALL STOP THE 
COOKING (c) Vlad Estivill-Castro 61 



62 

Requirements 
 (One-Minute Microwave Oven) 

Requirements Description 

R1 There  is a single control button available for the use of the oven. If the 
oven is closed and you push the button, the oven will start cooking (that 
is, energize the power-tube) for one minute 

R2 If the button is pushed while the oven is cooking, it will cause the oven 
to cook for an extra minute. 

R3 Pushing the button when the door is open has no effect. 

R4 Whenever the oven is cooking or the door is open, the light in the oven 
will be on. 

R5 Opening the door stops the cooking. 

R6 Closing the door turns off the light. This is the normal idle state, prior to 
cooking when the user has placed food in the oven. 

R7 If the oven times out, the light and the power-tube are turned off and 
then a beeper emits a warning beep to indicate that the cooking has 
finished. 

and does not clear the timer and stops the timer 

© Vlad Estivill-Castro 



63 

The DPL+State_Machine 
approach 

l  Step 1: Consider writing the script of music for 
an orchestra. Write individual scripts and place 
together all actuators that behave with the 
same actions for the same cues 

l  Example: The control of the tube (energizing), 
the fan and the spinning plate 

© Vlad Estivill-Castro 



64 

Step 2: Describe the conditions 
that result in the need to change 
state 
% MicrowaveCook.d 
 

name{MicrowaveCook}. 

 

input{timeLeft}. 

input{doorOpen}. 

 

C0: {}       => ~cook. 

C1: timeLeft =>  cook. C1 > C0. 

C2: doorOpen => ~cook. C2 > C1. 

 

output{b cook, "cook"}. 
Action: 

Posting a message 
to the whiteboard 

© Vlad Estivill-Castro 



65 

Step 1 (again): Analyze 
another actuator 

l  Illustration: The light 

© Vlad Estivill-Castro 



66 

Step 2 (again): Describe the 
conditions that result in the 
need to change state 
% MicrowaveLight.d 
 

name{MicrowaveLight}. 

 

input{timeLeft}. 

input{doorOpen}. 

 

L0: {}       => ~lightOn. 

L1: timeLeft =>  lightOn. L1 > L0.    
L2: doorOpen =>  lightOn. L2 > L0. 

 

output{b lightOn, "lightOn"}. 

© Vlad Estivill-Castro 



67 

Step 1 (again): Analyze 
another actuator 

l  Illustration: The button 

© Vlad Estivill-Castro 



68 

Step 2 (again): Describe the 
conditions that result in the need 
to change state 
% MicrowaveButton.d 
 
name{MicrowaveButton}. 
 

input{doorOpen}. 
input{buttonPushed}. 
 

 
CB0: {}           => ~add. 
CB1: buttonPushed =>  add. CB1 > CB0. 
CB2: doorOpen     => ~add. CB2 > CB1. 

 
 
output{b add, "add"}. 

 

© Vlad Estivill-Castro 



69 

Step 1 (again): Analyze 
another actuator 

l  Illustration: The bell 

© Vlad Estivill-Castro 



70 

Step 2 (again): Describe the 
conditions that result in the 
need to change state 

No need for a logic: timeLeft 
 - posted by another module 
 - does not require a proof 
  

© Vlad Estivill-Castro 



Step 1 (again): Analyze 
another actuator 
l  Illustration: The timer 

71 © Vlad Estivill-Castro 

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry 
{timeLeft=0<currentTime;}
OnExit {}
{}

TRUE

TRUE

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)



The complete arrangement 

(c) Vlad Estivill-Castro 72 

2 OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

1 ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

1 RINGING
OnEntry {sound=1;}
OnExit {}
{}

!timeLeft

2 NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

1 COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft

2 NOT_SHINE_LIGHT
OnEntry {int light; light=0;}
OnExit {}
{}

1 SHINE_LIGHT
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry 
{timeLeft=0<currentTime;}
OnExit {}
{}

true

true

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

Light Motor 

Bell 

Timer 



73 

That is all folks! 

l  Insert Image from Warner Brothers and 
URL for Video in Utube 

© Vlad Estivill-Castro 



www.youtube.com/watch?v=iEkCHqSfMco 

74 
© Vlad Estivill-Castro 



http://www.youtube.com/watch?v=Dm3SP3q9_VE 

©  V. Estivill-Castro 75 
75 © Vlad Estivill-Castro 



Outline 

l  Motivation 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Architecture 

76 © Vlad Estivill-Castro 



Contrast of sequential 
 execution 

event-driven models 
l  allow open concurrency 
l  this means the state of the 

system are all combinations 
of states of each thread 

l  models become complex 
l  language constructs for 

consistency 
l  model-checking becomes 

unfeasible 
l  simulation is not repeatable 

time-triggered 
architecture 

l  prescribes the scheduling 
l  reduced space of states of 

the system 

l  models are simpler 

l  model checking becomes 
feasible 

l  SIMULATIONS are 
repeatable 

(c) Vlad Estivill-Castro 77 



78 

StateWorks 

© Vlad Estivill-Castro 



79 

Petri Nets 

© Vlad Estivill-Castro 



80 

Behavior Trees 

l  Model 
Behavior Tree 

+-

USER

??Close??

^

What 

(the)
DOOR

...

+

OVEN

[Cooking ]

   

How 

(for)
One Minute

   

R3

--

USER

!No Effect !

   

What 

(on)
BUTTON

R4

--

LIGHT

!On !

   

R5

+

POWER-TUBE

[Off ]

   
R7

+

POWER-TUBE

[Off ]

   

R7

+

OVEN

[Cooking ]

   

What 

(has)
Finished

...

+-

OVEN

[Cooking ]

   

...

+-

OVEN

[Cooking ]

^

R4

+

LIGHT

[On ]

   

+-

OVEN

[Open ]

^

+-

OVEN

[Idle ]

^

   

-

DOOR

[Open ]

   

-

LIGHT

[On ]

   

+-

OVEN

[Open ]

^

   

[ ]

R3

--

USER

??Push??

   

What 

(the)
BUTTON

^

-

BEEPER

[ Idle ]

   

+-

USER

>PushButton<

   

+-

USER

>OpenDoor <

   

+-

USER

>PushButton<

   
R7 OVEN

??Timed Out ??

   

R7

+

LIGHT

[Off ]

   

+-

USER

>OpenDoor <

   

... DOOR

[Open ]

   

R4

--

LIGHT

!On !

   R3

--

USER

??Push??

   

What 

(the)
BUTTON

R5

+

OVEN

[Cooking ]

   

What 

()
Stopped

R7 BEEPER

[Emit ]

   

What 

()
Warning Beep

R5

+

OVEN

[Cooking ]

   

How 

(for)
Extra Minute

R1

+

BUTTON

[Pushed ]

   

R1 POWER-TUBE

[Energized ]

   

R2 BUTTON

[Pushed ]

... DOOR

[Closed ]

   

R6 LIGHT

[Off ]

   

R6

+

OVEN

[Idle ]

   

R4

+

LIGHT

[On ]

   

+-

OVEN

[Open ]

   

[ ]

-

   
POWER-TUBE

[Off ]

R3

--

USER

!No Effect !

   

What 

(on)
BUTTON

R3

--

USER

??Push??

   

What 

(the)
BUTTON

^

-

BEEPER

[ Idle ]

   

+-

USER

<PushButton>

   

...

+-

USER

??Push??

^

What 

(the)
BUTTON

--

LIGHT

!On !

   

   

+-

A.^

+-

B.^

+-

A.^

+-

DOOR

???Closed???

   

+-

DOOR

???Open???

   

+-

DOOR

???Closed???

   

+-

B   

   

[ ]

+-

A

   

[ ]

+-

USER

<CloseDoor >

   

R6

+

USER

??Close??

   

What 

(the)
DOOR

...

+

USER

??Push??

   

What 

(the)
BUTTON

R6

+

USER

??Place??

What 

()
FOOD

Where 

(in)
OVEN

+-

DOOR

???Open???

   

R5

+

USER

??Open??

   

What 

(the)
DOOR

R3

--

USER

??Push??

   

What 

(the)
BUTTON

+-

USER

>CloseDoor <

   

+-

USER

<OpenDoor >

   

-

USER

??Remove??

What 

()
FOOD

Where 

(in)
OVEN

R6

+

DOOR

[Open ]

   

Figure 6. The Model Behavior Tree of the Microwave Oven

!"

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on October 25, 2009 at 22:28 from IEEE Xplore.  Restrictions apply. 

© Vlad Estivill-Castro 



81 

Behavior Trees 
l  Design Behavior Tree 

R6 LIGHT

[Off ]

   

R6

+

OVEN

[Idle ]

   

+-

OVEN

[Open ]

   

+-

OVEN

>> CloseDoor <<

   

+-

OVEN

>>PushButton<<

   

+-

OVEN

>>OpenDoor <<

   

[ ]

--

R6 DOOR

[Open ]

   

--

DOOR    
...

[Closed ]

R1 POWER-TUBE

[Energized ]

   

R5

+

POWER-TUBE

[Off ]

   

+

LIGHT

[Off ]

   

R7

+

POWER-TUBE

[Off ]

   

R7

+-

BEEPER

[Emit Warning Beep ]

   

...

+-

OVEN

[Cooking ]

   

...

+-

OVEN

[Cooking ]

^

+

LIGHT

[On ]

   

+-

OVEN

[Open ]

^

+-

OVEN

[Idle ]

^

-

LIGHT

[On ]

   

+-

OVEN

[Open ]

^

+-

OVEN

>>PushButton<<

   

+-

OVEN

>> OpenDoor <<

   

+-

OVEN

>>OpenDoor <<

   

+-

OVEN

>>PushButton<<

   

+-

TIMER

[One Minute ]

   

+-

TIMER

[Extra Minute]

   

+-

TIMER

[Stopped ]

   

+-

OVEN

>>Timed Out <<

   

[ ]

--

   

R1 BUTTON

[Pushed ]

--

DOOR

[Open ]

   

--

DOOR

[Open ]

   

--

R2 BUTTON

[Pushed ]

--

BEEPER

[Idle ]

   

(cont.)

(cont.)

...

--

   
POWER-TUBE

[Off ]

--

R4 LIGHT

[On ]

   

--

BEEPER

[Idle ]

   

Figure
8.

The
D

esign
B

ehaviorTree
ofthe

M
icrow

ave
O

ven

!
!

A
u
th

o
riz

e
d
 lic

e
n
s
e
d
 u

s
e
 lim

ite
d
 to

: G
R

IF
F

IT
H

 U
N

IV
E

R
S

IT
Y

. D
o
w

n
lo

a
d
e
d
 o

n
 O

c
to

b
e
r 2

5
, 2

0
0
9
 a

t 2
2
:2

8
 fro

m
 IE

E
E

 X
p
lo

re
.  R

e
s
tric

tio
n
s
 a

p
p
ly

. 

© Vlad Estivill-Castro 



Comparison 

l  Far simpler 
l  Less states than 

l  StateWorks,  
l  Behavior Trees 

§  (less boxes and arrows) 

l  Far less crossings that Petri nets 

l  Behavior Trees  miss the alarm 
(beeper). 

82 
© Vlad Estivill-Castro 



The interaction between 
modules 
l  Shows up in the behavior tree. 
l  But does not happen in BECCIE 

83 © Vlad Estivill-Castro 



Module interaction 
diagrams 
l  Perhaps of a global behavior tree 

84 © Vlad Estivill-Castro 



Outline 
l  Motivation 

l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Summary 
85 © Vlad Estivill-Castro 



MDD raises the stakes from 
earlier on 

l  Importance of Model-Checking 

l  Verify the model has correct behavior 

l  Importance of Failure Modes and Effects 
Analysis (FMEA) 

l  Verify the model is robust and the impact of 
failures is understood  

l  NO INTERMIDIATE DEVELOPMENT PHASES 
l   WHERE COMMON SENSE OF HUMANS WILL 

PREVAIL 
(c) Vlad Estivill-Castro 86 



Sequential finite state 
machines 

Model-Checking of Transition-Labeled Finite State Machines 3

a state (i.e. sj 2 S) named the target of the transition. For all the transitions
in Li, the state si 2 S is called the source.

3. Each state has three activities. These activities are labeled On-Entry, On-
Exit, and Internal, respectively. An activity is either an atomic statement P
(and for the time being the only atomic statement is the assignment x := e)
or a compound statement P = hP1;P2; . . . Pti where each Pk is an atomic
statement.

Note that sequential finite-state machines have a very similar structure to UML’s
state machines [11] and OMT’s state diagrams [15, Chapter 5].

Because of its structure, a sequential finite-state machine can be encoded
by two tables. The first table is the activities table and has one row for each
state. The columns of the table are the state identifier, and columns for the On-
Entry, On-Exit, and Internal activities. In this table the order of the rows
does not matter except that the initial state is always listed as the last. The
second table of the sequential finite-state machine is the transitions table. Here,
the rows are triplets of the form (si, eij , sj) where si is the source state, eij is
the Boolean expression and sj is the target state. In this table, all rows for the
same source state must appear in the reverse order than that prescribed by the
list Li. This is perhaps an unusual convention derived from the legacy that the
first implementation of the interpreter used to scan the table and build the list
as a push onto a stack.

Sequential finite-state machines can also be illustrated by state diagrams.
Fig. 1 illustrates a simple sequential finite-state machine. In this machine we

Fig. 1: A sequential finite-state machine is a model of a sequential program.

have three sates S = {Start,Maybe,Next} and in this case the initial state is
s0 = Start. The states Maybe and Next have no internal activity and the list

© Vlad Estivill-Castro 87 



Operational formal semantics 
6 Estivill-Castro, Rosenblueth

{Initial state is set up}
current state  s0;
{Default arrival to a state is because a transition fired}
fired  true ;

{Infinite loop}
while ( true ) do

{On arrival to a state execute On-Entry activity}
if ( fired ) then

execute ( current state.on Entry ) ;
end if

{If the state has no transitions out halt}
if ( ; == current state.transition List ) then

halt;
end if

{Evaluate transitions in order until one fires or end of list}
out Transition  current state.transition List.first;
fired  false;
while ( out Transition  current state.transition List.end AND NOT
fired ) do

if ( fired  evaluate (current state.out Transition) ) then
next state  current state.out Transition.target;

end if
out Transition  current state.transition List.next;

end while

{If a transition fired, move to next state, otherwise execute Internal activities}
if ( fired) then

execute ( current state.on Exit ) ;
current state  next state;

else
execute ( current state.Internal ) ;
fired  false;

end if
end while

Fig. 2: The interpretation of a sequential finite-state machine.
© Vlad Estivill-Castro 88 



Translate into a Kripke 
structure (automatic) 

After Boolean 1.2 Start True
x=0,y=1, f i red=true

Before Start
x=0 ,y=0

After OnEntry Start
x=0 ,y=0

After Boolean 1.1 True
x=0,y=0,  f i red=true

Before Start
x=0 ,y=1

After OnEntry Start
x=0 ,y=1

After Boolean 1.1 Start False
x=0,y=1,f i red=false

Before Maybe
x=1 ,y=1

After OnEntry Maybe
x=1 ,y=1

After Boolean Maybe True
x=1,y=1,  f i red=true

After OnEntry Next
x=1 ,y=1

After Boolean Next True
x=1,y=1,  f i red=true

Before Next
x=1 ,y=1

Before Start
x=1 ,y=1

Before Start
x=1 ,y=0

© Vlad Estivill-Castro 89 



The Microwave example 
--- We can translate DPL to 
propositions 

NOT_COOKING
OnEntry:
motion:=false

COOKING
OnEntry:
motion:=true;

! (!doorOpen && timeLeft)

!doorOpen && timeLeft

© Vlad Estivill-Castro 90 

LIGHT_OFF
OnEntry:
l ights:=false

LIGHT_ON
OnEntry:
l ights:=true;

! (doorOpen || timeLeft)

doorOpen || timeLeft



Delicate details 
 --- external variables 
l  We convert each 

sequential FSM 
state to a ringlet in 
the Kripke structure 
(automatic) 

© Vlad Estivill-Castro 91 

motor:=false;

NOT_COOKING
motor doorOpen !timeLeft

NOT_COOKING
motor !doorOpen timeLeft

NOT_COOKING
motor !doorOpen timeLeft

NOT_COOKING
!motor doorOpen timeLeft

NOT_COOKING
!motor doorOpen !timeLeft

NOT_COOKING
!motor !doorOpen !timeLeft

NOT_COOKING
!motor !doorOpen timeLeft

!doorOpen && timeleft

after NOT_COOKING OnEntry
!motor doorOpen timeLeft

after NOT_COOKING OnEntry
!motor doorOpen !timeLeft

after NOT_COOKING OnEntry
!motor !doorOpen timeLeft

after NOT_COOKING OnEntry
!motor !doorOpen !timeLeft

after evaluate NOT_COOKING
!motor !doorOpen !timeLeft

fired false NOT_COOKING
!motor doorOpen timeLeft

fired false NOT_COOKING
!motor doorOpen !timeLeft

fired true COOKING
!motor !doorOpen timeLeft

fired false NOT_COOKING
!motor !doorOpen !timeLeft

NOT_COOKING
motor doorOpen !timeLeft

after NOT_COOKING OnEntry
!motor doorOpen !timeLeft

fired false NOT_COOKING
!motor doorOpen !timeLeft

door closed

door Closed

time enabled

time enabled

after NOT_COOKING OnEntry
!motor !doorOpen timeLeft

fired false NOT_COOKING
!motor !doorOpen timeLeft

door closed && time enabled

door closed && time enabled

!doorOpen && timeleft

motor:=false;motor:=false; motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

evaluate NOT_COOKING
!motor doorOpen !timeLeft

evaluate NOT_COOKING
!motor !doorOpen timeLeft

evaluate NOT_COOKING
!motor doorOpen !timeLeft

evaluate NOT_COOKING
!motor doorOpen !timeLeft

evaluate NOT_COOKING
!motor !doorOpen timeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !timeLeft

evaluate COOKING
motor doorOpen !timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !timeLeft

COOKING
motor !doorOpen timeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen timeLeft

evaluate NOT_COOKING
motor !doorOpen timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen timeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !timeLeft

evaluate NOT_COOKING
motor doorOpen !timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !timeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen timeLeft

evaluate NOT_COOKING
motor !doorOpen timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen timeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !timeLeft

evaluate NOT_COOKING
motor doorOpen !timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !timeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen timeLeft

evaluate NOT_COOKING
motor !doorOpen timeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen timeLeft

COOKING
motor doorOpen !timeLeft

COOKING
motor !doorOpen timeLeft

COOKING
motor doorOpen !timeLeft

COOKING
motor !doorOpen timeLeft

COOKING
!motor doorOpen !timeLeft

COOKING
!motor !doorOpen timeLeft

COOKING
!motor doorOpen !timeLeft

COOKING
!motor !doorOpen timeLeft

motor:=true; motor:=true; motor:=true;

COOKING
motor !doorOpen timeLeft

COOKING
motor doorOpen !timeLeft

COOKING
motor !doorOpen timeLeft

evaluate COOKING
motor !doorOpen timeLeft

!(!doorOpen && timeleft) !(!doorOpen && timeleft) !(!doorOpen && timeleft)

evaluate COOKING
motor doorOpen !timeLeft

evaluate COOKING
motor !doorOpen timeLeft

fired false COOKING
motor !doorOpen timeLeft

fired false COOKING
motor doorOpen !timeLeft

fired false COOKING
motor !doorOpen timeLeft

motor:=false;

BeforeNOT_COOKING
!motor doorOpen !t imeLeft

BeforeNOT_COOKING
motor !doorOpen t imeLeft

BeforeNOT_COOKING
!motor !doorOpen t imeLeft

BeforeNOT_COOKING
motor doorOpen t imeLeft

NOT_COOKING
!motor doorOpen !t imeLeft

NOT_COOKING
!motor !doorOpen !t imeLeft

NOT_COOKING
!motor !doorOpen t imeLeft

!doorOpen && timeleft

After OnEntry NOT_COOKING 
!motor doorOpen t imeLeft

after NOT_COOKING OnEntry
!motor doorOpen !t imeLeft

after NOT_COOKING OnEntry
!motor !doorOpen t imeLeft

after NOT_COOKING OnEntry
!motor !doorOpen !t imeLeft

after evaluate NOT_COOKING
!motor !doorOpen !t imeLeft

fired false NOT_COOKING
!motor doorOpen t imeLeft

fired false NOT_COOKING
!motor doorOpen !t imeLeft

fired true COOKING
!motor !doorOpen t imeLeft

fired false NOT_COOKING
!motor !doorOpen !t imeLeft

BeforeNOT_COOKING
motor doorOpen !t imeLeft

After OnEntry NOT_COOKING
!motor doorOpen !t imeLeft

fired false NOT_COOKING
!motor doorOpen !t imeLeft

door closed
time enabled

After OnEntry NOT_COOKING 
!motor !doorOpen t imeLeft

fired True NOT_COOKING
!motor !doorOpen t imeLeft

door closed && time enabled

!doorOpen && timeleft

motor:=false;
motor:=false; motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

evaluate NOT_COOKING
!motor !doorOpen t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

evaluate NOT_COOKING
!motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate NOT_COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate NOT_COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

COOKING
!motor doorOpen !t imeLeft

COOKING
!motor !doorOpen t imeLeft

COOKING
!motor doorOpen !t imeLeft

COOKING
!motor !doorOpen t imeLeft

motor:=true; motor:=true; motor:=true;

COOKING
motor !doorOpen t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

evaluate COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft) !(!doorOpen && timeleft) !(!doorOpen && timeleft)

evaluate COOKING
motor doorOpen !t imeLeft

evaluate COOKING
motor !doorOpen t imeLeft

fired false COOKING
motor !doorOpen t imeLeft

fired false COOKING
motor doorOpen !t imeLeft

fired false COOKING
motor !doorOpen t imeLeft

COOKING
motor !doorOpen t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft



Partial view of the overall 
Kripke structure 

motor:=false;

BeforeNOT_COOKING
!motor doorOpen !t imeLeft

BeforeNOT_COOKING
motor !doorOpen t imeLeft

BeforeNOT_COOKING
!motor !doorOpen t imeLeft

BeforeNOT_COOKING
motor doorOpen t imeLeft

NOT_COOKING
!motor doorOpen !t imeLeft

NOT_COOKING
!motor !doorOpen !t imeLeft

NOT_COOKING
!motor !doorOpen t imeLeft

!doorOpen && timeleft

After OnEntry NOT_COOKING 
!motor doorOpen t imeLeft

after NOT_COOKING OnEntry
!motor doorOpen !t imeLeft

after NOT_COOKING OnEntry
!motor !doorOpen t imeLeft

after NOT_COOKING OnEntry
!motor !doorOpen !t imeLeft

after evaluate NOT_COOKING
!motor !doorOpen !t imeLeft

fired false NOT_COOKING
!motor doorOpen t imeLeft

fired false NOT_COOKING
!motor doorOpen !t imeLeft

fired true COOKING
!motor !doorOpen t imeLeft

fired false NOT_COOKING
!motor !doorOpen !t imeLeft

BeforeNOT_COOKING
motor doorOpen !t imeLeft

After OnEntry NOT_COOKING
!motor doorOpen !t imeLeft

fired false NOT_COOKING
!motor doorOpen !t imeLeft

door closed
time enabled

After OnEntry NOT_COOKING 
!motor !doorOpen t imeLeft

fired True NOT_COOKING
!motor !doorOpen t imeLeft

door closed && time enabled

!doorOpen && timeleft

motor:=false;
motor:=false; motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

motor:=false;

!doorOpen && timeleft

evaluate NOT_COOKING
!motor !doorOpen t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

evaluate NOT_COOKING
!motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate NOT_COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

motor:=true;

after COOKING OnEntry
motor doorOpen !t imeLeft

evaluate NOT_COOKING
motor doorOpen !t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor doorOpen !t imeLeft

motor:=true;

after COOKING OnEntry
motor !doorOpen t imeLeft

evaluate NOT_COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft)

after fired false COOKING
motor !doorOpen t imeLeft

COOKING
!motor doorOpen !t imeLeft

COOKING
!motor !doorOpen t imeLeft

COOKING
!motor doorOpen !t imeLeft

COOKING
!motor !doorOpen t imeLeft

motor:=true; motor:=true; motor:=true;

COOKING
motor !doorOpen t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

evaluate COOKING
motor !doorOpen t imeLeft

!(!doorOpen && timeleft) !(!doorOpen && timeleft) !(!doorOpen && timeleft)

evaluate COOKING
motor doorOpen !t imeLeft

evaluate COOKING
motor !doorOpen t imeLeft

fired false COOKING
motor !doorOpen t imeLeft

fired false COOKING
motor doorOpen !t imeLeft

fired false COOKING
motor !doorOpen t imeLeft

COOKING
motor !doorOpen t imeLeft

evaluate NOT_COOKING
!motor doorOpen !t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

COOKING
motor doorOpen !t imeLeft

COOKING
motor !doorOpen t imeLeft

© Vlad Estivill-Castro 92 



Properties we can verify 
(flex/bison/NuSMV/C++) 
(antlr/NuSMV/C++) 

l  Necessarily, the oven stops three transitions (in the 
Kripke structure) after the door opens 
l  AG( doorOpen=1 & motor =1) -> AX AX AX (motor=0) 

l  It is necessary to pass trough a state in which the door is 
closed to reach a state in which the motor is working and 
the machine has started. 
l  !E[ !(doorOpen=0) U (motor=1 & !(pc=BeforeNOT_COOKING) )] 

l  Necessarily the oven stops three transitions in the Kripke 
structure after the time elapses 
l  AG ( (timeLeft=0 & motor=1) -> AX AX AX (motor=0) 

© Vlad Estivill-Castro 93 



Observations 
l  Kripke structures are efficient 

l  Linear states and transitions on the 
states of FSM 

l  Exponential on # of variables 
l  Can prove properties of necessary 

atomicity  
l  Coordination with the sensor 

l  Properties given any state at 
commencement. 

© Vlad Estivill-Castro 94 



Outline 
 
l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Summary 

95 © Vlad Estivill-Castro 



Industrial Press Requirements 

(c) Vlad Estivill-Castro 96 

Requirements Description 

R1 The plunger is initially resting at the bottom with the motor off.  

R2 When power is supplied, the controller shall turn the motor on, 
causing the plunger to rise.  

R3 When at the top, the plunger shall be held there until the 
operator pushes and holds down the button. This shall cause 
the controller to turn the motor off and the plunger will begin to 
fall.  

R4 If the operator releases the button while the plunger is falling 
slowly (above PONR), the controller shall turn the motor on 
again, causing the plunger to start rising again, without 
reaching the bottom.  

R5 If the plunger is falling fast (below PONR) then the controller 
shall leave the motor off until the plunger reaches the bottom.  

R6 When the plunger is at the bottom the controller shall turn the 
motor on: the plunger will rise again.  



ElectricMotorOn
OnEntry 
{ motorOn=1;}

ElectricMotorOff
OnEntry
 {motorOn=0;}

signalMotorOn

! signalMotorOn

ElectricMotorOn
OnEntry 
{ motorOn=1;}

ElectricMotorOff
OnEntry
 {motorOn=0;}

signalMotorOn

! signalMotorOn

The complete model 
--- with peripherals for 
model checking and FMEA 

(c) Vlad Estivill-Castro 97 

IndicatingPressAwayFromBottom
OnEntry 
{ sensorAtBottomActive=0;}

IndicatingPressAtBottom
OnEntry 
{sensorAtBottomActive=1;}

!signalPlungerAtBottom

signalPlungerAtBottom

ButtonPressed
OnEntry 
{ buttonPushed=1;}
.

ButtonIsReleased
OnEntry 
{buttonPushed=0;}
.

operatorPushingButton

!operatorPusshingButton

OpeningPress
OnEntry {signalMotorOn=1;}

buttonPushed

PowerOn sensorAtTopActive

Open

Closing
OnEntry{signalMotorOn=0;}

!buttonPushed && !low

sensorAtBottomActive

PressClosed
OnEntry{extern PowerOn; 
low=1;  PowerOn=0; 
signalMotorOn=0}

operator 

controller 
button 

PlungerAtBottom
OnEntry{ plungerRisingBelowPONR=0;}

PlungerRisingBelowPONR
OnEntry{ plungerRisingBelowPONR=1;}
OnExit{ plungerRisingBelowPONR=0;}

! low

motorOn && sensorAtBottomActive ! motorOn

PlungerFallingFast

PlungerRisingAbovePONR

! motorOn

PlungerFallingSlow

sensorAtTopActive PlungerAtTop
! motorOn

motorOn

low

sensorAtBottomActive

bottom sensor 

plunger 

IndicatingPressHIGHerThanPONR
OnEntry  {low=0;}

IndicatingPressLOWerThanPONR
OnEntry {low=1;}

signalPlungerBelowPONR

! signalPlungerBelowRONRPONR sensor 

motor 

PressAtTop
OnEntry 
{ sensorAtTopActive=1;}

PressAwayFromTop
OnEntry 
{sensorAtTopActive=0;}

signalPlungerAtTop

! signalPlungerAtTopTop sensor 



Contrast with Behavior Trees 

(c) Vlad Estivill-Castro 98 

Incorrect modeling of sequence of events after  
the press falls down 

Grunske  et al 
Softw. Pract. Exper. 
2011; 41:1233–1258 
 
 



Industrial Press 
l  Property-1 “If the operator is not pushing the button and the 

plunger is at the top, the motor should remain on”.  
l  G( (operatorPushingButtom=0 & plunger_state=at_top) -> motorOn=1)  

l  Property-2 “If the plunger is falling below the PONR, a state 
modelled by the plunger falling fast, then the motor should remain 
off.”  
l  G( plunger_state=falling_fast -> motorOn=0 )  

l  Property-3 “If the plunger is falling above the PONR, a state 
modelled by falling slow, and the operator releases the button, the 
motor should eventually turn on, before the plunger changes state.”  
l  G( (plunger_state=falling_slow 

& operatorPushingButton=0) ->(plunger_state=falling_slow U motorOn=1))  

l  Property-4 “The motor should never turn off while the plunger is 
rising”.  
l  G( !((plunger_state=rising_below_PONR |plunger_state=rising_above_PONR) 

&motorOn=0))  

© Vlad Estivill-Castro 99 



Demo 

http://www.youtube.com/watch?
v=blUpMdH14pM 

(c) Vlad Estivill-Castro 100 



Properties demonstrated by 
model-checking 
Property-1 “If the operator is not pushing the button and 
the plunger is at the top, the motor should remain on”. 
 
Property-2 “If the plunger is falling below the PONR, a 
state modeled by the plunger falling fast, then the motor 
should remain off.” 
 
Property-3 “If the plunger is falling above the PONR, a 
state modeled by falling slow, and the operator releases 
the button, the motor should turn on, before the plunger 
changes state.” 
 
Property-4 “Once the plunger is down, a new signal is 
needed to turn the motor on and raise the plunger again.” 

(c) Vlad Estivill-Castro 101 



Table level 1 

(c) Vlad Estivill-Castro 102 



Mine Pump 

(c) Vlad Estivill-Castro 103 

Requirements Description 

R1 The pump extracts water from a mine shaft. When 
the water volume has been reduced below the low-
water sensor, the pump is switched off. When the 
water raises above the high-water sensor it shall 
switch on.  

R2 An human operator can switch the pump on and off 
provided the water level is between the high-water 
sensor and the low-water sensor.  

R3 Another button accessed by a supervisor can 
switch the pump on and off independently of the 
water level.  

R4 The pump will not turn on if the methane sensor 
detects a high reading.  

R5 There are two other sensors, a carbon monoxide 
sensor and an air-flow sensor, and if carbon 
monoxide is high or air-flow is low, and alarm rings 
to indicate evacuation of the shaft.  



Models are two FSMs 
 - the logic part not illustrated 

(c) Vlad Estivill-Castro 104 

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

alarmOn

~alarmOn

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

pumpShallGoOn

pumpShallGoOff



Mine Pump 

l  Property-1 “If the CO2 is high, the alarm to evacuate personnel must ring.” 
l  Property-2 “If the airflow is low, the alarm to evacuate personnel must ring.” 
l  Property-3 “If the methane level is high, the pump must be turned off.” 
l   Property-4 “If the supervisor turns the pump off when running, the pump will be turned 

off.” 
l  Property-5 “If the operator turns its switch off when the pump is running and the water 

level is neither low nor high, then the pump motor goes off.” 
l  Property-6 “The pump comes on when the water is above the high water sensor (and 

the low-water sensor’s signal is consistent with this), unless the supervisor turn it off or 
there is high methane.” 

l  Property-7 “If the supervisor sets the switch as inactive and the pump is running when 
the water is not above the high water sensor and the low-water sensor indicates a low 
level, the pump comes off.” 

l  Property-8 “If there is low methane, low water, and the pump is not running, but the 
supervisor puts the switch to on, then the pump comes on.” 

l  http://www.youtube.com/watch?v=y4muLP0jA8U&feature=player_embedded 

© Vlad Estivill-Castro 105 



name{MINEPUMP}. 
input{lowWaterSensorOn}.  input{highWaterSensorOn}.  input{operatorButtonOn}. 
input{methaneSensorHigh}.  input{indicateOn}.  input{indicateOff}. 
 
P0: {} =>  ~pumpShallGoOn. 
P1: highWaterSensorOn =>  pumpShallGoOn.                                                           P1>P0. 
P2: lowWaterSensorOn =>  ~pumpShallGoOn.                                                           P2>P1. 
P3: {~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> pumpShallGoOn.                P3>P2. P3>P0. 
P4: {~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> ~pumpShallGoOn.            P4>P3. 
P5: indicateOn => pumpShallGoOn.                                                                    

 P5>P2. P5>P4. P5>P0. 
P6: indicateOff => ~pumpShallGoOn.                                                                  

 P6>P5. 
P7: methaneSensorHigh => ~pumpShallGoOn.                                                          P7>P5. P7>P3. P7>P1. 
 
N0: {} =>  ~pumpShallGoOff. 
N1: {~indicateOn,lowWaterSensorOn} =>  pumpShallGoOff.                                             N1>N0. 
N2: {~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> pumpShallGoOff.  N2>N0. 
N3: indicateOff => pumpShallGoOff.                                                                 N3>N0. 
N4: methaneSensorHigh => pumpShallGoOff.                                                           N4>N0. 
 
output{b pumpShallGoOn,"pumpShallGoOn"}.  output{b pumpShallGoOff,"pumpShallGoOff"}. 

The logic 
part of the 
models 

(c) Vlad Estivill-Castro 106 

%Alarm.d 
name{ALARM}. 
 
input{CO2SensorHigh}. input{airFlowLow}. 
 
A0: {} =>  ~alarmOn. 
A1: CO2SensorHigh =>  alarmOn. A1>A0. 
A2: airFlowLow =>  alarmOn. A2>A0. 
 
output{b alarmOn,"alarmOn"}. 



The complete model 

(c) Vlad Estivill-Castro 107 

supervisorButtonOff && !supervisorButtonOn

2 INACTIVE
OnEntry {extern supervisorButtonOn;
          extern supervisorButtonOff;
          extern supervisorButtonInactive;
  indecateOn=0; indicateOff=0;}
OnExit {}
{}

1 INDICTAE_ON
OnEntry { indecateOn=1; }
OnExit {indicateOn=0;}
{}

1 INDICTAE_OFF
OnEntry { indecateOff=1; }
OnExit {indicateOff=0;}
{}

supervisorButtonOff && !supervisorButtonOn

 !supervisorButtonOn && !supervisorButtonOff

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

CO2SensorHigh || airFlowLow !CO2SensorHigh && !airFlowLow



Mine Pump 
l  FMEA-performing failure modes and 

effect analysis (FMEA)  

© Vlad Estivill-Castro 108 



Demo video 
http://www.youtube.com/watch?

v=y4muLP0jA8U 
(c) Vlad Estivill-Castro 109 



ANALYSYS 

The process 

(c) Vlad Estivill-Castro 110 

Requirements Build Model 

Simulate 

Validate 
(nSMV) 

Safety 
Properties 

Deploy 
(C++/Java) 

Fault 
Injection 

FMEA 
tables 

Refine 



Outline 
l  Motivation 

l  Robotics and Software Engineering 

l  Why State Machines and Why Logic 

l  Examples 

l  Comparison 

l  Model Checking 

l  Architecture 

l  Summary 
111 © Vlad Estivill-Castro 



How is a robot architecture 
organized 

(c) Vlad Estivill-Castro 112 From “Behavior-Based Robotics” by R. Arkin, MIT Press, 1998 



Robot control 
(philosophies) 
l  Open Loop Control 

l  Just carry on, don’t look at the environment 

l  Feedback control 

l  Minimize the error to the desired state 

l  Reactive Control 

l   Don’t think, (re)act. 

l  Deliberative (Planner-based/Logic -based) Control 

l   Think hard, act later. 

l  Hybrid Control 

l   Think and act separately & concurrently. 

l  Behavior-Based Control (BBC) 

l   Think the way you act. 

(c) Vlad Estivill-Castro 113 

No use of logic 
 
no use of common sense 
 
no intelligence? 



114 

Software Architecture 
l  Agents / Robots 

Reactive 
Systems 

Reasoning/ Planning 
Systems 

“Soft-Computing/ 
Computational Intelligence” 

Symbolic AI 

Hybrid System 
Systems 

© Vlad Estivill-Castro 



115 

A hybrid system 
l  The initial progress on logic and 

reasoning within AI has largely been 
discarded from mobile robotics in favour 
of reactive architectures 

l  We demonstrate the use of non-
monotonic reasoning in the challenging 
application of RoboCup 

l  Plausible logic is the only non-monotonic 
logic with an algorithm that detects loops 

© Vlad Estivill-Castro 



116 

Reasoning 
l  Deriving conclusions from facts 

l  Apparently, a fundamental 
characteristic of intelligence 

l  An expected aspect of intelligent 
systems 

l  Withdrawing conclusions in the light 
of new evidence is a capability 
usually referred to as non-
monotonic reasoning 

© Vlad Estivill-Castro 



117 

Non-Monotonic Reasoning 

l  A form of Common Sense 
l  Retract previous 

conclusions in the light of 
new evidence 

1.  Planes usually leave on time. 
2.  My flight leaves at 11:00 am. 
3.  Therefore, I should be at the airport at 9:00am. 
4.  My flight is cancelled. 
 
5.  Makes no sense to take actions for going to the 

airport early. 

© Vlad Estivill-Castro 



118 

l  Integrate 
l  Vision 
l  Sound 

recognition 
l  Motion Control 
l  Reasoning 

Result: Robotic Poker Player 

  Environment 
•  Complex 
•  Interactive 
•  Unpredictable 
•  Competitive 
•  Incomplete 

Information 

© Vlad Estivill-Castro 



119 

Previous Work 
--- Software architectures for robotics 

l  Action - Sensor Model [Wooldridge 2002] 
l  Solution for control problem 

l  Golog [Vassos et al 2007] 
l  Aim for “Cognitive Robotics” 

l  Knowledge Middleware [Heintz et al 2007] 
l  Bridge low level sensor knowledge 

l  Robotic Architectures [Liu 2004] 
l  Generic Robot [Kim et al 2005] 

l  Solution to platform dependence 

© Vlad Estivill-Castro 



120 

Global Architecture 
l  Framework = Software Engineering 

l  Solves 
l  Module Production / Workload problems 
l  Software Development Methodology Problem 

l  Whiteboard (Blackboard [Hayes-Roth 1988]) 
l  Solves 

l  Knowledge representation problem  
§  (facts with timestamp and author) 

l  Module Interaction Problem 
l  Also called a Data Distribution Service -Publisher/

Subscriber 
l  Domain Knowledge 

l  Logics 
l  Belief revision / knowledge elicitation 

l  Solves 
l  Validation / verification /specification 

© Vlad Estivill-Castro 



121 

Our Architecture 
l  Solution to Control Problem 

External States 

Behaviours (and sub-behaviours) 

Actions 

exclusive 

decomposable 

priorities 
asynchronous 
associated with 
actuators 

© Vlad Estivill-Castro 



122 

  Robotic Soccer 
•  Complex 

behaviour 

 

Behaviour Illustration 
l  Robotic Soccer 

l  Simple Behaviour 

l  Sub-behavior 

© Vlad Estivill-Castro 



123 

Engineering the behavior 

l  Using visual descriptions of the 
behaviour that incorporate formal logic 

l  Engineers use diagrams to model 
artefacts. 

l  Software Engineering has traditionally 
used diagrams to convey characteristics 
and descriptions of software 

© Vlad Estivill-Castro 



124 

ATTACKER 

ball_visible 

ball_not_visible 

KICK_TO 
DO:find_opposite goal 
and head_kick() 

BALL_FINDER 

BALL_CHASER 

d
o
n
e 

g
o
t
_
i
t 

GO_TO_ 
POSITION 

a
r
r
i
v
e
d
_
h
o
m
e 

m
a
x
_
t
i
m
e 

recently_seen && chest_triggered 

© Vlad Estivill-Castro 



125 

AGENT 

Whiteboard 

Knowledge Base 
se

ns
or

s sensor wrapper 

actuators 

actuator wrapper 

ENVIRONMENT 

perception action 

Behaviour 
Control 

Reasoning 
 Engine 

State Machine 
Interpreter 

© Vlad Estivill-Castro 



126 

Wrapping Sensors and 
Actuators 

l  Portability 
l  Simulation / Virtualisation 
l  Validation 

Whiteboard 

sensor 1 belief of 
observing the ball 

behaviour 

© Vlad Estivill-Castro 



127 

Wrapping Sensors and 
Actuators 

l  Portability 
l  Simulation / Virtualisation 
l  Validation 

Whiteboard 

sensor 1 contradictory  
information 
about the ball 

no behaviour 
sensor 2 

Alternative 
Example: Seeing both goals 

© Vlad Estivill-Castro 



128 

Our approach 
  

Vision and 
Object Recognition 

Sensor fusion 

Consistency 
 Module 

Non-monotonic 
reasoning 

© Vlad Estivill-Castro 



129 

Our approach 

Consistency 
 Module 

Non-monotonic logic that combines facts known 
about the environment with what is reported 

by the sensors 

© Vlad Estivill-Castro 



130 

Wrapping Sensors and 
Actuators 

l  Portability 
l  Simulation / Virtualisation 
l  Validation 

Whiteboard 

sensor 1 useful  
information 
about the ball 

behaviour 
sensor 2 

Reasoning 
 Engine 

© Vlad Estivill-Castro 



131 

Wrapping Sensors and 
Actuators 
l  Fusion in time 

Whiteboard 

sensor 1 useful  
information 
about the ball 

behaviour sensor 1 

Reasoning 
 Engine 

time t1 

time t2 

© Vlad Estivill-Castro 



132 

Independent and 
 Asynchronous 

l  Reasoning Engine 

Actuators 

Sensors 

Control 

Reasoning Engine 

© Vlad Estivill-Castro 



133 

Reasoning Engine 
l  Template Method 

1.  All facts are labelled unknown 

2.  Extract facts from whiteboard 

3.  Execute predicates that are more efficient in 
imperative languages 

4.  Run the necessary queries /proofs on DPL 

© Vlad Estivill-Castro 



Interpret a behavior 

134 

STATE_ID_1 
Do: 
ACTIVITY_
1 

STATE_ID_2 
Do: 
ACTIVITY_
2 

logic_output_1/action_1 

logic_output_2/action_2 

logic_output_3/action_3 

© Vlad Estivill-Castro 



135 

Behavior Interpreter (version 1) 
void fsmMachine :: execute ()!
{ !vector <fsmState*>::iterator it;!

!it=theStates.begin();!
!fsmState* current = (*it);!

!int currentID = current -> getID();!
!cerr << Initial State is State Number " << current->getID()<< "\n”;!

!!
!while (1) // run for ever!

!{// Evaluate labels of transitions going out of current state!
! // and may change state!

!p_fsmTransition p_itTransitions;!
!p_itTransitions = current->theFirstTransition();!

!bool transitionFired = false;!
      while ((!transitionFired) &&  (NULL!= p_itTransitions))!

! !{cout << "Evaluate : " <<( (p_itTransitions)->getExpression() ) -> getWhatToEvaluate() << "\n";    !
! ! cout << "Does this expression evaluate to true (Y/N)?\n";     !

! ! char response;     cin >> response;     !
! ! if ('Y'== response) // we need to execute the transition!

! !  { !current= p_itTransitions->getTarget();!
! ! !currentID=current->getID();!

! ! !// break out!

! ! !transitionFired = true;!
! !   }     !

! !  else // advance to next transition!
! !    {  p_itTransitions = current ->theNextTransition();!

! !    }!
! !} // or != NULL!

!// send message to Actuators of My Activity!
!// by posting to whitebaord!

!cout  << " After evalaution the state is : " <<find(current->getID())->getID() << "\n";!
!cout << " We are " << ( current->getActivity() )->getWhatToDo() << "\n";!

!}!
}!

Get initial state 

Always 
Get first transition 

Evaluate 

Move to new state 
and break if true 

Do activity 

© Vlad Estivill-Castro 



136 

Robo 
Cup 
2011 

© Vlad Estivill-Castro 

Robo 
Cup 
2012 



137 

Research output derived from 
RoboCup Standard platform and 
RoboCup@Home 

1. Estivill-Castro, V. and Lovell, N. ``Improved Object Recognition – The RoboCup 4-legged league’’ Proc. 2003 IDEAL 4th Int. Conf. on Intelligent Data Engineering and Automated 
Learning. Hong Kong Springer-Verlag LNCS. Vol. 2690 p.1123-1130. (2003). 
2. Bartlett, B. Estivill-Castro, V. Seymon, S. and Tourky, A. ``Robots for Pre-orientation and Interaction of Toddlers and Preschoolers who are Blind'' Proc. 2003 Australasian Conf. 
on Robotics and Automation. 2003 CSIRO's QCAT CD-ROM.  
3. Bartlett, B. Estivill-Castro, and V. Seymon, S. ``Dogs or Robots - Why do we see them as robotic pets rather than canine machines?'' 5th Australasian User Interface Conference 
(AUIC2004), Dunedin.  CRPIT, Vol. 28. Ed. p. 7-14. 
4. Lovell, N. "Real-Time Embedded Vision System Development using AIBO Vision Workshop 2" Proc. of the Mexican Int. Conf. on Computer Science (ENC), IEEE Computer Society 
Press. 160-167 (2004). 
5. Fenwick, J. and Lovell, N. "Linear Time Construction of Vectorial Object Boundaries" 6th IASTED Int. Conf. on Signals and Image Processing (SIP), August 2004, Hawaii, USA 
6. Estivill-Castro, V. and Lovell, N. "A Descriptive Language for Flexible and Robust Object Recognition" 8th International RoboCup Symposium, July 2004, Lisbon, Portugal 
7. Estivill-Castro, V. and McKenzie B. "Hierarchical Monte-Carlo Localisation Balances Precision and Speed'' Proc.2004 Australasian Conference on Robotics and Automation. 
December 6-8, 2004 in Canberra at Australian National University. CD-ROM. 
8. Lovell, N. "Illumination independent object recognition." In Noda, I., Jacoff, A., Brendenfeld, A., Takahashi, Y., eds.: Proc. Robocup 2005 Symposium, Springer-Verlag . LNCS 4020 
(2006), p. 384-395. 
9. Lovell, N. "Fast Posture and Object Recognition using Symmetries" Proc. 2005 Australasian Conference on Robotics and Automation. December 5-7, 2005 in Sydney at University of 
New South Wales. Claude Sammut (editor) CD-ROM . 
10. Billington, D., Estivill-Castro, V., Hexel, R., and Rock A., "Non-monotonic Reasoning for Localisation in RoboCup" Proc. 2005 Australasian Conference on Robotics and 
Automation. 2005 in Sydney at University of New South Wales. CD-ROM. 
11. J. Fenwick and V. Estivill-Castro ``Optimal Paths for Mutually Visible Agents'' The 16th Annual Int. Symposium on Algorithms and Computation. Deng, X. and D.-Z. (Eds.) 2005, 
Sanya, Hainan, China. Springer Verlag LNCS 3827, pages 869-881.  
12. V. Estivill-Castro and S. Seymon "Mobile Robots for an E-mail interface for People who are Blind'' Robocup Int. Symposium 2006. G. Lakemeyer, E. Sklar , D. G. Sorrenti and T. 
Takahashi eds. Springer Verlag LNCS. Vol 4434, pages 338-346 2007.  
13. Lovell, N. “Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots”, PhD thesis, Griffith University, 2007. 
14. D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, ``Using Temporal Consistency to Improve Robot Localisation'' Robocup International Symposium 2006. Springer Verlag 
LNCS. Vol 4434, p. 232-244, 2007. 
15. J. Fenwick and V. Estivill-Castro. ``Mutually visible agents in a discrete environment'' The Thirtieth Australasian Computer Science Conference (ACSC-2007), Ballarat. CRPIT, 
Vol. 62.  p. 141-150. 
16. D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Non-monotonic Reasoning on Board a Sony AIBO” Soccer Robotics. P. Lima editor. IS 
17. N. Lovell, and V. Estivill-Castro “Color Classification and Object Recognition for Robot Soccer Under Variable Illumination” Soccer Robotics. P. Lima editor. 

© Vlad Estivill-Castro 

 www.mipal.net.au/publications.php 



138 

Ramifications 
l  Motion control 

l  pick up the cards / 
move bricks or chips 

l  Image processing 
l  recognize opponents 

partners 
l  actions / gestures 
l  cards / figures 

l  Agent technology 
l  reasoning / game play/ 

knowledge 
representation 

l  Multi-modal 
l  sound / motion / 

speech 
l  Virtual games / tele-

presence  
© Vlad Estivill-Castro 



139 

Focusing on a prototype 
leads to links with other 
areas 

l  Research in education 
l  Meaningful play is learning 

© Vlad Estivill-Castro 



140 

Robots provide to the blind what 
was lost when text interfaces 
where replaced by GUIs 

l  Mobile robots for an E-mail interface for 
people who are blind 
l  Provide a multi-modal mobile interface 

for ambient intelligence 
l  Enable mnemonic commands 
l  Allow rapid learning 

© Vlad Estivill-Castro 



Summary 
l  State diagrams 

l  Widely used, solid tool to communicate 
requitements, behaviors 
l  The reactive part 

l  Transitions are labeled by questions to an 
inference engine 
l  Solid tool to model the declarative part 

l  Simplify the burden by using non-monotonic 
logics 
l  Defaults 
l  Iterative refinement 

l  Loosely coupled architecture 
l  Platform independent 
l  Simulation / Validation / Model checking 

141 © Vlad Estivill-Castro 



Summary 
l  Ensure quality and safety 

l  software in embedded controllers 
l  Logic-labeled vectors of FSM, sequentially 

scheduled 
l  provide more succinct models 

l  validated 

l  with clear semantics 
l  that 

l  can be simulated 
l  can be exported to various platforms  

§  (model-driven development) 
l  can be model-checked  

§  (in a matter of seconds, as opposed to days of CPU time) 
l  can be examined with fault-injection 

142 © Vlad Estivill-Castro 



143 
© Vlad Estivill-Castro 


