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Context

“Given the low computational resources of
the NAO robot, their perception 1s a rather
difficult task, making the application of
state-of- the-art computer vision approaches
such as the Histogram of Oriented
Gradients (HOG) 1mpossible”

(A. Fabisch, T. Laue, and T. Rofer, “Robot recognition and
modeling in the in the RoboCup standard platform league,”
in 5th Workshop on Humanoid Soccer Robots at

Humanoids, 2010)
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Results:
» On board of the NAO we learn
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How do we do this
» Use shape

* looking down
* most background 1s the surface

* looking for circles of certain
established sizes is the ball

e the rest are line markings

* looking ahead
* find other NAOs
— HOG

» find goals
— HOG

o ® e
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HOG (Histogram of Gradients)

D Recognized as “the” technique for human
form

» NAOs are humanoids, but simpler

N~
» Thus, we can tailor the HOG W
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What s the HOG output
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What is the HOG output
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Environment
Analysis

Capture picture
) looking down

Y

Convert to
gray scale

Y

Smooth

v

Use Hough Circle
Transform

v

Cluster circles

enough circles?

Delete above
horizon

\ 2

Separate pixels

outside selected

circles and their
margin

>

Cluster by k-means
(k=2) and build
training samples of
surface and line
markings

Cluster by
components

surface ball

similitude and build
training samples of
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Environment
Analysis

Original image Hough Circle Transform

Draw circle, but
separate on bigger
circle (a margin)
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Environment Analysis

— -

Separate:
1) lines and field

VS

2) ball

Cluster colours expecting . clus.ter (x,3,7)
two classes (k-means) expecting one (histogram)
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Environment
Analysis

) k-means (k = 2) to separate the lines
pixels from the field pixels

MO
120 ;
100

130

+  Lines
+  Field
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Environment Analysis

a Calculate average
blob color

Y : .
Grogphsti)milar 1 Ite ratlon
neighbors .
9 pixels
neighbors?
YES

13
iterations
579 pixels

NO

s the curren
neighbor color
similar to the
blob?

Add neighbor to
cluster

/6

iterations
Has the blob
o 2546
odified? .
pixels
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Team colour detection

» Histogram of oriented
gradients: feature
descriptors used for
object detection.

* Image divided in cells

» Gradients for each
direction within a cell
are quantified

» Cells are grouped in
blocks

* Window is defined for
detection

W/
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Training

* Window size: 64 x 128
Block size: 16 x 16
Block stride: 8 x 8
Cell size: 8 x 8
Number of bins: 9

. 64

128

Feature vector size = (4+3) x (8+7) x4 x 9 =3780
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Humanoid detection
» Shape-based NAO detection by SVM

» Training:

* Number of positive
training examples:

824
* (412 images flipped
horizontally) ‘
* Number of negative|
examples: 4621

* (images flipped
vertically and cut in
windows of size
64x128
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Torso detection
Pixel clustering for Torso detection

1 iteration

9 pixel 1 iteration
: PIXeIS O pixels

& 18 18

M. iterations iterations
995 pixels 885 pixels
53 108
iterations iterations
1347 2679
pixels pixels
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Goal localization

» Objectives:
* Detect goals

- Extract the goal
colour

» Methods

- Feature extraction e
using HOG I =

3_
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Goal colour learning

* Window size: 16 x 16
Block size: 8 x 8
Block stride: 4 x 4
Cell size: 4 x 4
Number of bins: 9

Feature vector size=3x3x4x9=324
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Goal learning parameters

» Shape-based goal
corner detection by

SVM
» Training:
* Number of positive :
training examples: 344
* (172 images flipped
horizontally)
* Number of negative
examples: 316800
* (images flipped

vertically and cut in

windows of size 16 x
16)
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Yellow pixels selection

e

"

1 iteration
9 pixels

5
iterations
66 pixels

12
iterations
201 pixels

W/

1 iteration
9 pixels

5
iterations
84 pixels

2
iterations

148 pixels
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What we learn
» mapping (Y,U, V) to colour for segmentation.
* Mapping is a classifier

* Colour class: YxUxV — Colour

* Colour Class(y,u,v)=0range
| Y|x|U|x|V]|=256
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The bit-Map for
a color projection

d» If Min <Y AND Y< Max

range.v orange.v

; 255
M lnorange, y Max

D A classifier 1s a table look up

» C/C++bit-wise AND operation
Colour Orange=Y[y]&U[u]&V[V]

orange,y
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A Decision List
is a Scan through the Bits of a Memory Word

RightMostBit LeftMostBit RightMostBit LeftMostBit RightMos LeftMostBit

255 I N =
0 i i I B

Y U 14

colour=Y[y]&U[ul]&V[Vv];
colour 1d=0 ;

while (colour & 1 == 0)
{ colour>>=1; colour id++;}
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List can repeat simple classifiers

(y: u) V) mp | Color_Orange

/m \ yes
Color_Blue ‘
/o e
Color _Orange ‘
/ no yes
Color Yellow ‘
/ no es

Color_Green
/ es
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Comparison of Decision List

» ANN using snns were 20K times slower

» 4-NN with Quadtrees and Decision Trees
(Weka) were 2K times slower

Look-up Ratio
DL Table

Maximum |2.87ms 2.46ms 1.16

Average 2.33ms 1.41ms 1.65

Minimum |[2.08ms 1.27ms 1.63
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Accuracy with Decision Lists is
Marginally Better

Algorithm 10-fold Lowest Largest 2- size Learning | Test set
accuracy | accuracy class time accurac
per class | confusion y
PART 99.0% 96% 10 blue dog | 26 1.15s 99.3%
(yellow Vs gray dog | Rules
goal)
k-NN 99.3% 97% 8 red dog k=3 0Os 99.7%
(blue dog) | Vs gray dog | 6,226
Instanc
es
DT 98.8% 95% 10 red dog 34 1.27s 99.6%
(yellow Vs gray dog | leaves
goal) 67
nodes
Look—up 71.6% 64% 45 yellow 11 manual 68.2%
(yellow goal vs rules
Table goal) orange ball
2 - Universit:
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How we learn
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Qualitative results

» Environment analysis:
* Performs well on different fields
(adaptive smoothing)

D Teams detection

 The trained SVM with HOG features
detects NAOs 1n different positions and

orientations
» Goal localization

» The SVM with HOG {features detects
the corners of the goals 1n most cases
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Quantitative results

TABLE 1. RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF HUMANOID ROBOT DETECTION.

True positives 452

False positives 3

True negatives 2769

False negatives 60

Average precision | 99.33%

Average recall 88.26%

TABLE II. RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF GOAL CORNER DETECTION.

True positives 187

False positives 61

True negatives 64,406
False negatives 41

Average precision | 75.55%
Average recall 82.57%
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In one minute, at the

RoboCup venue

D hittp://www.youtube.com/watch?v=DEMaRop
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Conclusions

» The classifier built by the procedure
IS capable to segment the images
and to recognize the important
soccer elements

» The procedure is fast enough to be
performed within a minute
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Future lines

» Incorporate images and
learning while game play

» Define strategies to
integrate shape-based and
colour-based detection

» Improve unbalanced
classification of the goal
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