

0

2

Humanoids Learning who are Teammates and who are Opponents

Thanks for your interest

Vlad Estivill-Castro

School of Information and Communication Technology Institute for Intelligent and Integrated Systems Griffith University Australia

Departament de Technologies de la Informacio Universitat Pompeu Fabra Spain

Mi-PAL

IIIS

MILPA

Context

IIIS

"Given the low computational resources of the NAO robot, their perception is a rather difficult task, making the application of state-of- the-art computer vision approaches such as the *Histogram of Oriented Gradients (HOG)* impossible"

(A. Fabisch, T. Laue, and T. Röfer, "Robot recognition and modeling in the in the RoboCup standard platform league," in *5th Workshop on Humanoid Soccer Robots at Humanoids*, 2010)

Results:

IIIS

- On board of the NAO we learn
 - the color of the ball
 - the color of the playing surface
 - the color of the line markings on the playing surface
 - the color of the teams shirts

© V. Estivill-Castro

• the color of the goals

official colors

Universit

Pompeu Fabra Barcelona

How do we do this

- Use shape
 - looking down
 - most background is the surface
 - looking for circles of certain established sizes is the ball
 - the rest are line markings
 - looking ahead
 - find other NAOs
 - HOG
 - find goals
 - HOG

Universitat

Pompeu Fabra Barcelona

5

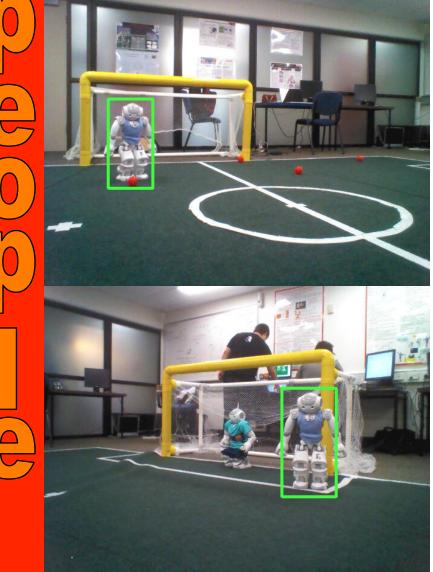
IIIS

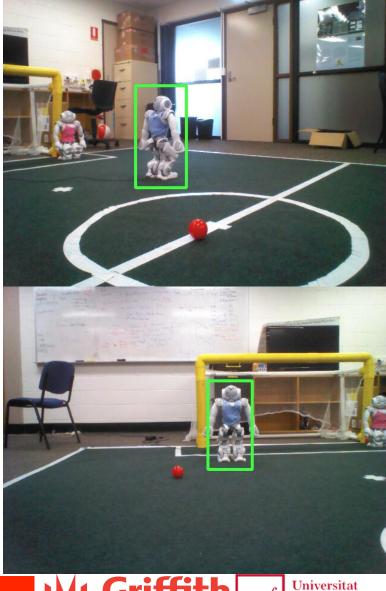
HOG (Histogram of Gradients)

- Recognized as "the" technique for human form
- NAOs are humanoids, but simpler

Thus, we can tailor the HOG

What is the HOG output





lup

UNIVERSITY

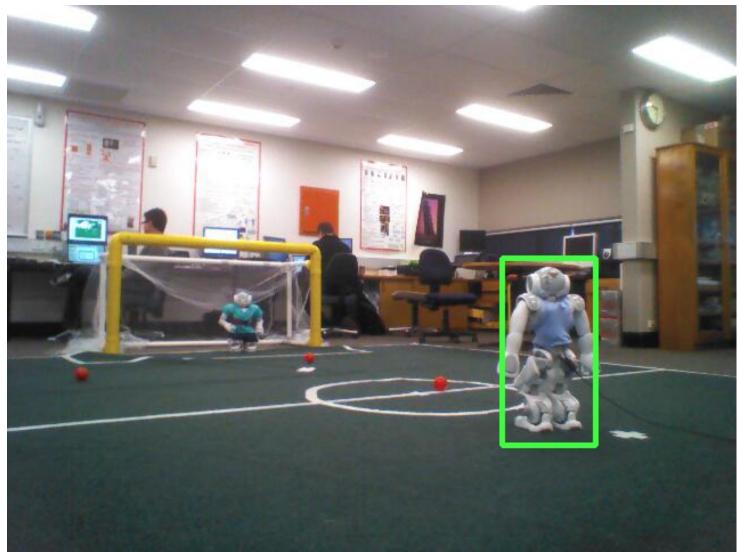
Pompeu Fabra

Barcelona

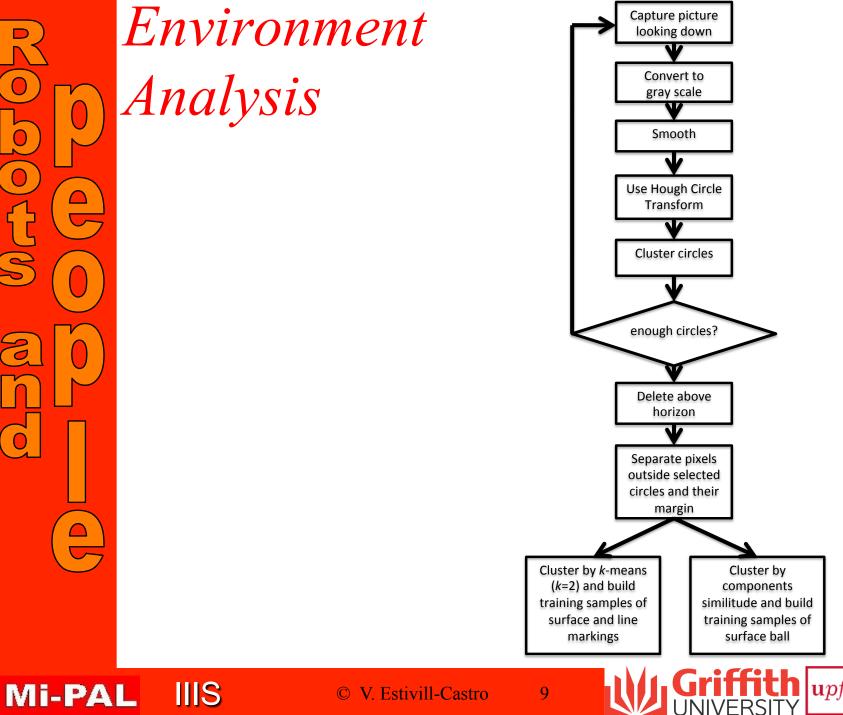
Mi-PAL IIIS

© V. Estivill-Castro

What is the HOG output



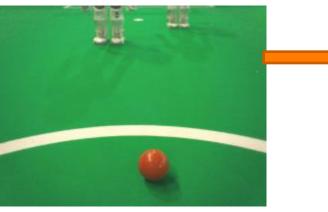
© V. Estivill-Castro



Environment Analysis

Original image

IIIS



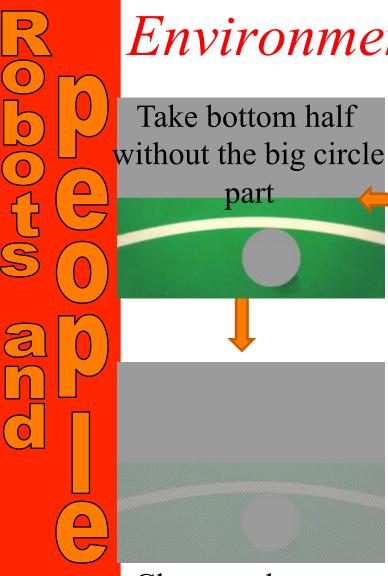
Hough Circle Transform

Draw circle, but separate on bigger circle (a margin)

Universitat

Pompeu Fabra Barcelona

© V. Estivill-Castro



Environment Analysis

Separate: 1) lines and field VS 2) ball

Take ball circle part

Cluster colours expecting two classes (k-means)

IIIS

Take bottom half

part

cluster (x, y, r)expecting one (histogram)

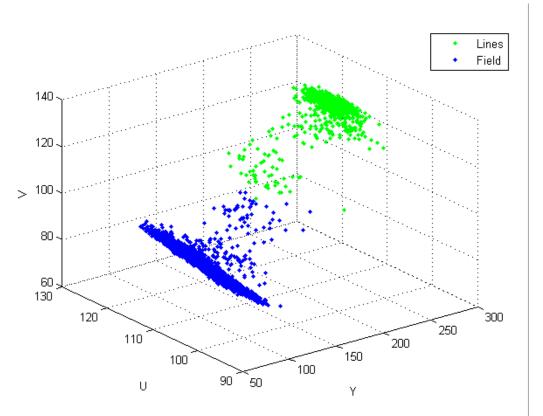
up

© V. Estivill-Castro

11

Environment Analysis

k-means (k = 2) to separate the lines pixels from the field pixels



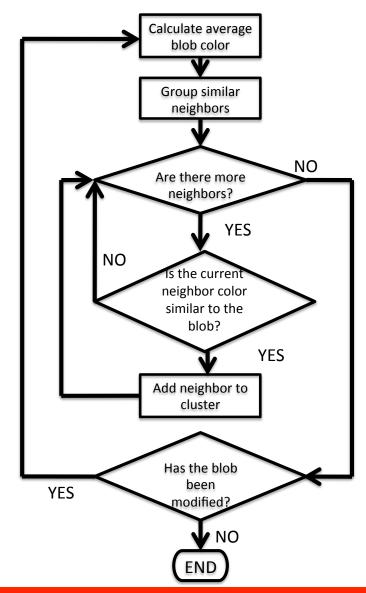
12

© V. Estivill-Castro

Environment Analysis

© V. Estivill-Castro

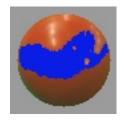
13



IIIS

1 iteration 9 pixels

13 iterations 579 pixels

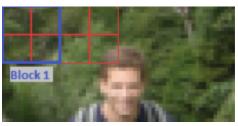


76 iterations 2546 pixels

Team colour detection

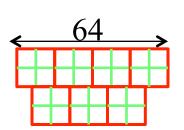
- Histogram of oriented gradients: feature descriptors used for object detection.
 - Image divided in cells
 - Gradients for each direction within a cell are quantified
 - Cells are grouped in blocks
 - Window is defined for detection

IIIS

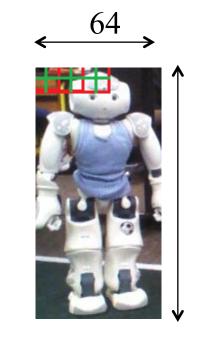


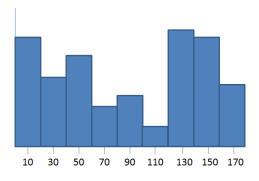
Training

- Window size: 64 x 128
- Block size: 16 x 16
- Block stride: 8 x 8
- Cell size: 8 x 8
- Number of bins: 9



IIIS





Feature vector size = (4+3) x (8+7) x 4 x 9 = 3780

 $\mathbf{u}\boldsymbol{p}$

128

Humanoid detection

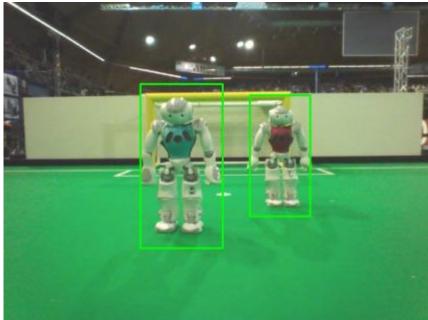
Shape-based NAO detection by SVM

16

Training:

IIIS

- Number of positive training examples: 824
 - (412 images flipped horizontally)
- Number of negative examples: 4621
 - (images flipped vertically and cut in windows of size 64x128)



Universitat

Pompeu Fabra Barcelona

Torso detection Pixel clustering for Torso detection

1 iteration 9 pixels

18 iterations 995 pixels

53 iterations 1347 pixels

IIIS

1 iteration 9 pixels

18 iterations 885 pixels

17

108 iterations 2679 pixels

> Universitat Pompeu Fabra Barcelona

up

Goal localization

- **Objectives:**
 - Detect goals
 - Extract the goal colour
- Methods

IIIS

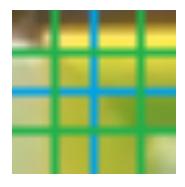
- Feature extraction using HOG
- Detection by SVM

Goal colour learning

- Window size: 16 x 16
- Block size: 8 x 8
- Block stride: 4 x 4
- Cell size: 4 x 4

IIIS

• Number of bins: 9



Feature vector size = 3 x 3 x 4 x 9 = 324

Goal learning parameters

Shape-based goal corner detection by SVM

Training:

- Number of positive training examples: 344
 - (172 images flipped horizontally)
- Number of negative examples: 316800
 - (images flipped vertically and cut in windows of size 16 x 16)

Universitat

Pompeu Fabra Barcelona

Yellow pixels selection

1 iteration 9 pixels

iterations

201 pixels

1 iteration 9 pixels

5 iterations 84 pixels

9 iterations 148 pixels

up

VFRSITY

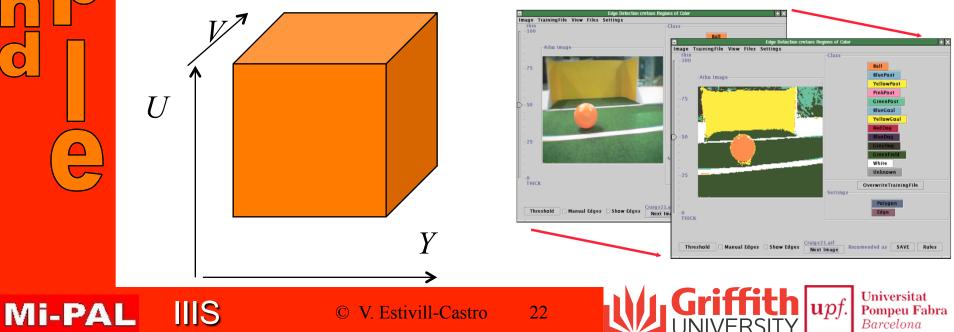
Universitat

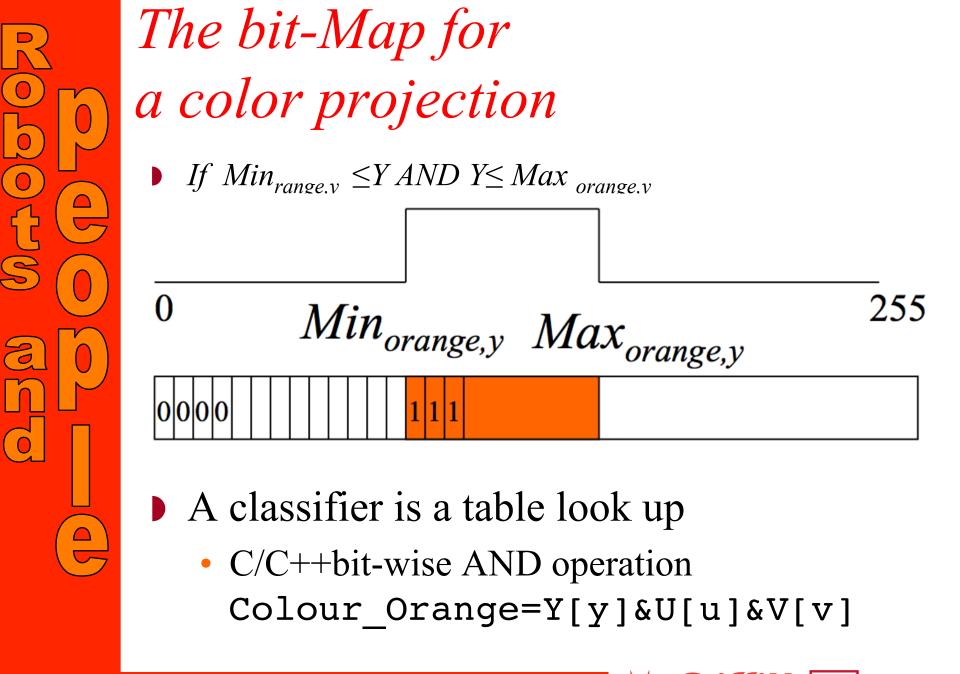
Barcelona

Pompeu Fabra

What we learn

- mapping (Y, U, V) to colour for segmentation.
 - Mapping is a classifier
 - $Colour_class: YxUxV \rightarrow Colour$
 - Colour_Class(y,u,v)=Orange
 - $|Y|x|U|x|V|=256^3$



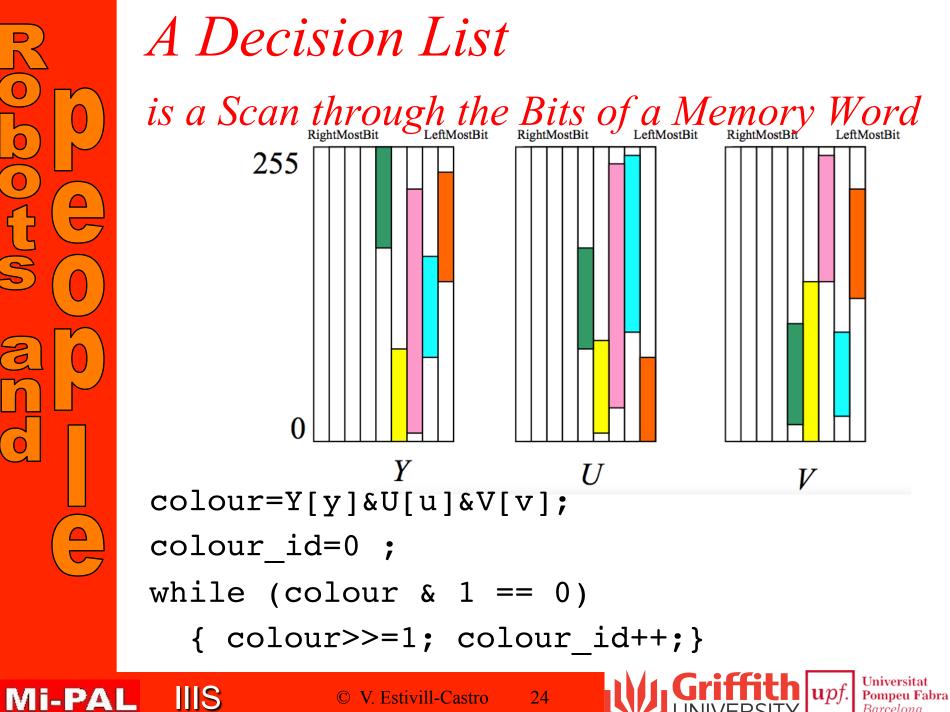


IIIS

Mi-PA

Universitat

Pompeu Fabra Barcelona



8

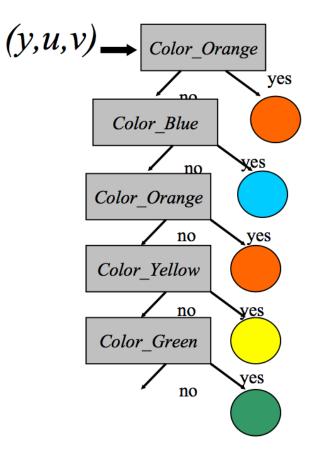
 $\overline{\mathbf{0}}$

Barcelona

70

Mi-PAL

List can repeat simple classifiers



IIIS ° '

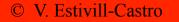
25

Comparison of Decision List

- ANN using snns were 20K times slower
- *k*-NN with Quadtrees and Decision Trees
 (Weka) were 2K times slower

	DL	Look-up Table	Ratio
Maximum	2.87ms	2.46ms	1.16
Average	2.33ms	1.41ms	1.65
Minimum	2.08ms	1.27ms	1.63

26



IIIS

Accuracy with Decision Lists is Marginally Better

Algorithm	10-fold accuracy	Lowest accuracy per class	Largest 2- class confusion	size	Learning time	Test set accurac y
PART	99.0%	96% (yellow goal)	10 blue dog Vs gray dog	26 Rules	1.15s	99.3%
k-NN	99.3%	97% (blue dog)	8 red dog Vs gray dog	k=3 6,226 Instanc es	0s	99.7%
DT	98.8%	95% (yellow goal)	10 red dog Vs gray dog	34 leaves 67 nodes	1.27s	99.6%
Look-up Table	71.6%	64% (yellow goal)	45 yellow goal vs orange ball	11 rules	manual	68.2%

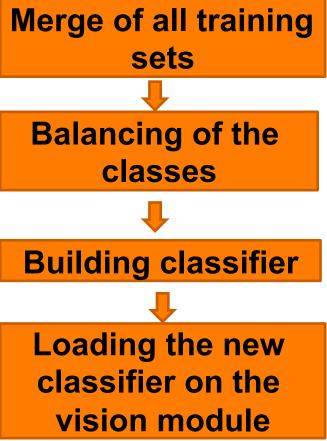
Mi-PAL IIIS

8

© V. Estivill-Castro

Universitat

Pompeu Fabra Barcelona



IIIS

Qualitative results

- Environment analysis:
 - Performs well on different fields (adaptive smoothing)
- Teams detection
 - The trained SVM with HOG features detects NAOs in different positions and orientations

Goal localization

IIIS

• The SVM with HOG features detects the corners of the goals in most cases

IIIS

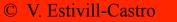
Quantitative results

TABLE I.RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF HUMANOID ROBOT DETECTION.

True positives	452
False positives	3
True negatives	2769
False negatives	60
Average precision	99.33%
Average recall	88.26%

TABLE II.RESULTS OF 6-FOLD CROSS VALIDATION TO ASSES
ACCURACY OF GOAL CORNER DETECTION.

True positives	187
False positives	61
True negatives	64,406
False negatives	41
Average precision	75.55%
Average recall	82.57%



In one minute, at the RoboCup venue http://www.youtube.com/watch?v=DEMaRopZSrQ&feature=youtu.be

© V. Estivill-Castro

IIIS

31

6

Conclusions

The classifier built by the procedure is capable to segment the images and to recognize the important soccer elements

The procedure is fast enough to be performed within a minute

Future lines

- Incorporate images and learning while game play
- Define strategies to integrate shape-based and colour-based detection
- Improve unbalanced classification of the goal

Mi-PAL IIIS

© V. Estivill-Castro

34

