630 0T 0N

Viad Estivill-Castro

Architecture for

Hybrid Robotic Behavior
(D. Billington, R. Hexel and A. Rock)

Software Architecture
D Agents / Robots

“Soft-Computing/ Symbolic Al
Computational Intelligence”

(V)J Griffith

UNIVERSITY

A hybrid system

» The mmitial progress on logic and
reasoning within Al has largely been
discarded from mobile robotics 1n favour
of reactive architectures

» We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

D Plausible logic 1s the only non-monotonic
logic with an algorithm that detects loops

“”J Griffith

UNIVERSITY

Hybrid System for Intelligent

and Integrated System
» Reactive System » Reasoning
* State Machine Non-Monotonic Logic

“QI Griffith

UNIVERSITY

Reasoning

2% » Deriving conclusions from facts

 Apparently, a fundamental characteristic of
intelligence

» An expected aspect of intelligent systems

» Withdrawing conclusions in the light of
new evidence 1s a capability usually
referred to as non-monotonic reasoning

“')J Griffith

UNIVERSITY

Non-Monotonic Reasoning

I R

A form of Common Sense

Retract previous conclusions in the light of new
evidence

. Planes usually leave on time.

My flight leaves at 11:00 am.
Therefore, I should be at the airport at 9:00am.
My flight 1s cancelled.

. Makes no sense to take actions for going to the

airport early

“')J Griffith

UNIVERSITY

Result: Robotic Poker Player

Wfm

D Integrate » Environment

* Vision » Complex

* Sound recognition Interactive

* Motion Control - Unpredictable

° Reasoning » Competitive

* Incomplete
Information
W Griffith

Behaviour Design
D Software Engineering

» visual models of behaviour

- <

statement from non-monotonic logic

D Behaviour Specification)

- by humans Human-Robot

— .
» Human-Robot Interaction Collaboration

J

“')J Griffith

UNIVERSITY

Formal Logics

For the description of the behaviour
Advantages
1. Descriptions are unambiguous
e Descriptions have specific meanings.
2. Ease of description - descriptive
 Focus is on what the behaviour does, not how it
happens
3. Can be translated to implementations in imperative
languages like C++, Java
4. Understandable by humans
 Can be the result of a knowledge engineering
exercise
e Usually humans describe exceptions and laws
governing many situations in this way
Disadvantages
1. Can lead to undecidable settings or other difficulties for
implementation, like very large and/or inefficient

programs
Q”J Griffith

UNIVERSITY

Previous Work

» Action - Sensor Model [Wooldridge 2002]

* Solution for control problem

» Golog [Vassos et al 2007]

* Aim for “Cognitive Robotics”
» Knowledge Middleware [Heintz et al 2007]

 Bridge low level sensor knowledge

» Robotic Architectures [Liu 2004]
* Generic Robot [Kim et al 2005]

 Solution to platform dependence

“')J Griffith

UNIVERSITY

Global Architecture

» Framework = Software Engineering

* Solves

e Module Production / Workload problems
» Software Development Methodology Problem

» Whiteboard (Blackboard [Hayes-Roth 1988])

* Solves

» Knowledge representation problem
— (facts with timestamp and author)
¢ Module Interaction Problem

» Domain Knowledge
» Logics
» Belief revision / knowledge elicitation

* Solves
 Validation / verification /specification

“')J Griffith

UNIVERSITY

Our Architecture

D Solution to Control Problem

_ e

decomposable

priorities
asynchronous
associated with
actuators

(V)J Griffith

UNIVERSITY

Behaviour Illustration

D Robotic Soccer

* Simple Behaviour

/~ BALL_CHASER I
ball_not_visible
follow \ search
| Do:walk | Do:spin
| » Complex
\ B e A - .
= behaviour
. BALL CHASER W FINDER
° Sub-behaVIOr / ball not visible \
/~ BALL_FINDER ! G
—_0.1s passed
BALL FINDER
look_around
| Do:spin .
ball visibl
N) el
Q”J Griffith
UNIVERSITY

Engineering the behavior

» Using visual descriptions of the behaviour
that incorporate formal logic

» Engineers use diagrams to model artefacts.

» Software Engineering has traditionally used
diagrams to convey characteristics and
descriptions of software

“')J Griffith

UNIVERSITY

ATTACKER

SWT] Xeuw

recently seen && chest triggerec

ball not wvisible
¢ _ _

oall visible

(V)J Griffith

UNIVERSITY

ﬂGENT

_

perceptioii i action

Wy Griffith

Wrapping Sensors and Actuators
D Portability

» Simulation / Virtualisation

» Validation -

belief of
observing the ball

behaviour J

“')J Griffith

UNIVERSITY

Wrapping Sensors and Actuators
D Portability

» Simulation / Virtualisation

» Validation -

contradictory
information

- about the ball
no behaviour J

Alternative
Example: Seeing both goals

“')J Griffith

UNIVERSITY

Our approach

Vision and
Object Recognition

Non-monotonic
reasoning

Consistency
Module

Sensor fusion

(V)J Griffith

UNIVERSITY

Our approach

Consistency
Module

Non-monotonic logic that combines facts known
about the environment with what 1s reported
by the sensors

Q”J Griffith

UNIVERSITY

Wrapping Sensors and Actuators
D Portability

» Simulation / Virtualisation
& -

D Validation .
Reasoning
Engine

useful
information
about the ball

behaviour J

(V)J Griffith

UNIVERSITY

Wrapping Sensors and Actuators

» Fusion in time

a” -

Reasoning
Engine

useful
time ¢, information

about the ball
behaviour J
time ¢, TR

(V)J Griffith

UNIVERSITY

Independent and Asynchronous

D Reasoning Engine

Control

(V)J Griffith

UNIVERSITY

Reasoning Engine

» Template Method

“QI Griffith

UNIVERSITY

[llustration with state diagrams
ﬁALL_CHASER /B Gkl BINDES

» Exclusivity
c;ac; = false V i#j
D Exhaustivity

V._/"c,=true

(V)J Griffith

UNIVERSITY

Convert State Diagram
into Behaviour Tree

o204
On

» Draw down by
breadth-first
search

D Already visited
nodes are cloned
but not explored
again

“')J Griffith

UNIVERSITY

Convert a node in the tree to a
module in Plausible Logic

‘ 1. name () .
\‘ 2. Ltype
‘ State Type (y oS K)o
3. v{State () ..., State (5 k) }.
‘ 4. v{—-State(S 1),-State(S J)}.
(V 1 = 7J)
5. input{“e 1”}. (for 1=1,..,k}
6. Default: = State() .
7. Switch S 1:{%e 17"} =
State(s 1). (for 1=1,..,k)
8. Switch © U 5 1 > Default.

“')J Griffith

UNIVERSITY

Using the priority relation

i:{“e u”} = State(S 1i).
1 > Default.
j:{“e v”} = State(S 3J).
Switch S 0 S 7 > Default.

S W N e
n
=)
|_l. -
(—'-
@)
-y
N
(@)
n

Switch S 0 S p:{“e vAe u”} = State(S p).

Switch S 0 S p > Default.

Switch S 0 S p > Switch S 0 S i.

Switch S 0 S p > Switch S 0 S i.

0 J o O

“')J Griffith

UNIVERSITY

A logic for looking after the lady

l.
2.

A S A L

Usually there 1s no reason for alarm

The absence of owner for a long time 1s reason for alarm (this takes
precedence over rule 1)

Lying usually results from a fall

A fall 1s usually a reason for alarm (this takes precedence over rule 1)
Being on bed is not a fall (this takes precedence over rule 4)

Lying for a long time means owner 1s not getting up.

Not getting up 1s a reason for alarm (this takes precedence over rule 1)
If it 1s night, it 1s fine not to get up (this takes precedence over rule 7)

If there 1s a stranger looming over the lady, it 1s reason for an alarm
(takes precedence over rule 1)

10.0wner can’t be absent while on bed, or lying or lying for a long time.

11.0wner can’t be lying for a long time without lying for a short time.

“')J Griffith

UNIVERSITY

Diagrams a la Petri nets

nighttime

looming \i/)

notGettingUp

/ lyingLong

O > alarm

onBed

VY 7

“')J Griffith

UNIVERSITY

Prototype demonstrated at
RoboCup@Home 2007

“')J Griffith

UNIVERSITY

A diagram for a poker player

€ Applications Places Desktop {) @ 3 -

3% 1149 AM W (4

File Zoom Out Zoom In

Personality_Decision

Super_Tight_Aggressive
Bluffer
Tight_Aggressive

. ’

“handStrength_GT_40", equal_Game_Stame{Preflop,s)

“random_GT_BluffRatio”

Oppanent{Tight_Passive)

Opponent{Loose_Passive)

Opponent{Loose_Aggressive) Su
Opponent(Tight_Aggressive)

{¥
“handStrength_GT_50", equal_Game_State(Preflop,)

/ / “handStrength_GT_40"
“handStrength_GT_50"
\ "handStrength...Iv‘ > |"handStrengt...|v

| ‘Add Defeat |

it

“handStrength_GT_15™

“handStrength_GT_30"

“handStrerigth_GT_40", ‘equal_Game_State(Preflop, s

“handStrength_GT_50", equal_Game_State{Preflop,s)

"handStrength_GT_50", equal_Game_State(Pr...
"handStrength_GT_40", equal_Game_State(Pr...
"handStrength_GT_30" > "handStrength_GT_...

“tightness_GT_tightnesi_Threshold™

“aggressiveness_GT_dggressiveness_Threshold”

o | |

“aggressiveness_GT_aggressiveness_Threshold”, “tightness_GT_tightness_Threshold™ ’
’ / | New Type I Tight_Agaressive

New External Condition ‘

New State ‘ W
[4 [JPanel (Java 2 Platf...][4 [Debian -- The Univ...]m NetBeans IDE 6.0.1][@ Font (Java 2 Platfor... l@j Java]E---

“')J Griffith

UNIVERSITY

Code generated (example)

/* This is code Generated by the Generator

** This program was made by Mark Johnson 2008 (MiPAL)
** File Opponent.d

*/

name{Opponent}.

type Opponent(x<-Opponent_Type).

type Opponent_Type = {Loose_Passive, Loose Aggressive, Tight Passive, Tight Aggressive}.

V{Opponent(Loose Passive), Opponent(Loose Aggressive), Opponent(Tight Passive), Opponent(Tight Aggressive)}.
V{~Opponent(Loose Passive),~Opponent(Loose Aggressive)}.
V{~Opponent(Loose_Passive),~Opponent(Tight Passive)}.
V{~Opponent(Loose_Passive),~Opponent(Tight Aggressive)}.

V{~Opponent(Loose _Aggressive),~Opponent(Tight Passive)}.

V{~Opponent(Loose Aggressive),~Opponent(Tight Aggressive)}.
V{~Opponent(Tight_Passive),~Opponent(Tight Aggressive)}.

input{"aggressiveness GT aggressiveness Threshold"}.
input{"tightness GT_tightness Threshold"}.

Default Opponent: {}=>Opponent(Loose_Passive).

Switch_aggressiveness GT aggressiveness Threshold: {"aggressiveness GT aggressiveness Threshold"} => Opponent(Loose_Aggressive).
Switch_aggressiveness GT aggressiveness_Threshold > Default Opponent.

Switch_tightness GT _tightness Threshold: {"tightness GT _tightness Threshold"} => Opponent(Tight Passive).
Switch_tightness GT _tightness Threshold > Default Opponent.

Switch_aggressiveness GT aggressiveness Threshold n_tightness GT tightness Threshold: {"aggressiveness GT aggressiveness Threshold",
"tightness_GT_tightness Threshold"} => Opponent(Tight Aggressive).

Switch_aggressiveness GT aggressiveness Threshold n_tightness GT tightness Threshold > Default Opponent.

Switch_aggressiveness GT aggressiveness Threshold n_tightness GT tightness Threshold > Switch_tightness GT _tightness Threshold.
Switch_aggressiveness GT aggressiveness Threshold n_tightness GT tightness Threshold > Switch_aggressiveness GT aggressiveness_Threshold.

“')J Griffith

UNIVERSITY

Current Process 1. N
to Embed Design

into AIBO Robot . o

‘s

W &ﬁ@ﬁ%ﬁ'@

Systems interacting with humans

H .

oo

kUJ UNIVERSITY

Reasonable Independence of
Reasoning Approach

» Forward chaining

» Start from the current state of the behaviour,
run the label of every exiting transition and
move to the next state accordingly

 [llustration

 Find information about opponent and then decide

on the personality to play

— 1f opponent is tight and passive, then it is good to
adopt an aggressive personality

“')J Griffith

UNIVERSITY

Reasonable Independence of
Reasoning Approach

» Backward chaining

* Run many of the predicates further down the line,
and then be ready to apply and compose them as we
move back into the chain of state transitions

* Tllustration

* Find how would you play (your move) if you were
— tight aggressive
— loose aggressive
— lose passive
— tight passive
« consider the opinion of this experts in judging your play in
light of the stats you have on your oponent

“')J Griffith

UNIVERSITY

Modelling behaviours

1. Computer Assisted Software Engineering enables the
manipulation of modelling diagrams and the generation of
code from the models.

2. We introduce diagrams that use logic to describe
behaviour.

3. Our proposal extends techniques like Finite State
Machines, Petri Nets Object Models for Object
Orientation, and Behavior Trees.

4. We model the relationship between several inputs as
asserted conditions about the environment that an agent can
reason about (using logics) and resolve with respect to
knowledge of the environment.

“”J Griffith

UNIVERSITY

Summary

* Architecture for behaviors that integrate reactive
behavior and reasoned behavior

+ Several patterns of software engineering
incorporated that enable integration of
intelligent capabilities

* Integrating knowledge representation and control
« validity / expresibility / platform independence /
software process and methodology

* A middleware

e discussed 1t mostly OO (modules)

* but seems possible to integrate agents

— 1llustration of asynchronous achievement of goals by
backward / forward chaining

“”J Griffith

UNIVERSITY

Griffith

UNIVERSITY

W

