
1

Vlad Estivill-Castro
Architecture for

Hybrid Robotic Behavior
(D. Billington, R. Hexel and A. Rock)

© V. Estivill-Castro 2IIISIIIS

Software Architecture
 Agents / Robots

Reactive
Systems

Reasoning/ Planning
Systems

“Soft-Computing/
Computational Intelligence”

Symbolic AI

Hybrid System
Systems

© V. Estivill-Castro 3IIISIIIS

A hybrid system
 The initial progress on logic and

reasoning within AI has largely been
discarded from mobile robotics in favour
of reactive architectures

 We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

 Plausible logic is the only non-monotonic
logic with an algorithm that detects loops

© V. Estivill-Castro 4IIISIIIS

Hybrid System for Intelligent
and Integrated System
 Reactive System

• State Machine
 Reasoning

• Non-Monotonic Logic

S1 S2

1. name(Node).
2. type

State_Type(S_0,..,S_k).
3. Ú{State(S_0),…,State(S_

k)}.
4. Ú{ØState(S_i),ØState(S_

j)}. (" i ¹ j)
5. input{“e_i”}. (for

i=1,…,k}
6. Default: Þ State(S_0).
7. Switch_S_0_S_i:{“e_i”}

⇒ State(S_i). (for
i=1,…,k)

8. Switch_S_0_S_i >
Default.

event

© V. Estivill-Castro 5IIISIIIS

Reasoning

 Deriving conclusions from facts
• Apparently, a fundamental characteristic of

intelligence
 An expected aspect of intelligent systems
 Withdrawing conclusions in the light of

new evidence is a capability usually
referred to as non-monotonic reasoning

© V. Estivill-Castro 6IIISIIIS

Non-Monotonic Reasoning
 A form of Common Sense
 Retract previous conclusions in the light of new

evidence
1. Planes usually leave on time.
2. My flight leaves at 11:00 am.
3. Therefore, I should be at the airport at 9:00am.
4. My flight is cancelled.
5. Makes no sense to take actions for going to the

airport early.

© V. Estivill-Castro 7IIISIIIS

 Integrate
• Vision
• Sound recognition
• Motion Control
• Reasoning

Result: Robotic Poker Player

 Environment
• Complex
• Interactive
• Unpredictable
• Competitive
• Incomplete

Information

© V. Estivill-Castro 8IIISIIIS

Behaviour Design
 Software Engineering

• visual models of behaviour

STATE STATE
event

 Behaviour Specification
• by humans

 Human-Robot Interaction
Human-Robot
Collaboration

statement from non-monotonic logic

© V. Estivill-Castro 9IIISIIIS

Formal Logics
For the description of the behaviour
Advantages
1. Descriptions are unambiguous

• Descriptions have specific meanings.
2. Ease of description - descriptive

• Focus is on what the behaviour does, not how it
happens

3. Can be translated to implementations in imperative
languages like C++, Java

4. Understandable by humans
• Can be the result of a knowledge engineering

exercise
• Usually humans describe exceptions and laws

governing many situations in this way
Disadvantages
1. Can lead to undecidable settings or other difficulties for

implementation, like very large and/or inefficient
programs

© V. Estivill-Castro 10IIISIIIS

Previous Work

 Action - Sensor Model [Wooldridge 2002]
• Solution for control problem

 Golog [Vassos et al 2007]
• Aim for “Cognitive Robotics”

 Knowledge Middleware [Heintz et al 2007]
• Bridge low level sensor knowledge

 Robotic Architectures [Liu 2004]
• Generic Robot [Kim et al 2005]

• Solution to platform dependence

© V. Estivill-Castro 11IIISIIIS

Global Architecture
 Framework = Software Engineering

• Solves
• Module Production / Workload problems
• Software Development Methodology Problem

 Whiteboard (Blackboard [Hayes-Roth 1988])
• Solves

• Knowledge representation problem
– (facts with timestamp and author)

• Module Interaction Problem

 Domain Knowledge
• Logics

• Belief revision / knowledge elicitation
• Solves

• Validation / verification /specification

© V. Estivill-Castro 12IIISIIIS

Our Architecture
 Solution to Control Problem

External States

Behaviours (and sub-behaviours)

Actions

exclusive

decomposable

priorities
asynchronous
associated with
actuators

© V. Estivill-Castro 13IIISIIIS

 Robotic Soccer
• Complex

behaviour

Behaviour Illustration
 Robotic Soccer

• Simple Behaviour

• Sub-behavior

© V. Estivill-Castro 14IIISIIIS

Engineering the behavior
 Using visual descriptions of the behaviour

that incorporate formal logic
 Engineers use diagrams to model artefacts.
 Software Engineering has traditionally used

diagrams to convey characteristics and
descriptions of software

© V. Estivill-Castro 15IIISIIIS

ATTACKER

ball_visible

ball_not_visible

KICK_TO
DO:find_opposite goal
and head_kick()

BALL_FINDER

BALL_CHASER
d
o
n
e

g
o
t
_
i
t

GO_TO_
POSITION

a
r
r
i
v
e
d
_
h
o
m
e

m
a
x
_
t
i
m
e

ba
ll
_v
is
ib
le

recently_seen && chest_triggered

© V. Estivill-Castro 16IIISIIIS

AGENT

Whiteboard

Knowledge Base

se
ns

or
s sensor wrapper

actuators

actuator wrapper

ENVIRONMENT

perception action

Behaviour
Control

© V. Estivill-Castro 17IIISIIIS

Wrapping Sensors and Actuators
 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 belief of
observing the ball

behaviour

© V. Estivill-Castro 18IIISIIIS

Wrapping Sensors and Actuators
 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 contradictory
information
about the ball

no behaviour
sensor 2

Alternative
Example: Seeing both goals

© V. Estivill-Castro 19IIISIIIS

Our approach

Vision and
Object Recognition

Sensor fusion

Consistency
 Module

Non-monotonic
reasoning

© V. Estivill-Castro 20IIISIIIS

Our approach

Consistency
 Module

Non-monotonic logic that combines facts known
about the environment with what is reported

by the sensors

© V. Estivill-Castro 21IIISIIIS

Wrapping Sensors and Actuators
 Portability
 Simulation / Virtualisation
 Validation

Whiteboard

sensor 1 useful
information
about the ball

behaviour
sensor 2

Reasoning
 Engine

© V. Estivill-Castro 22IIISIIIS

Wrapping Sensors and Actuators

 Fusion in time

Whiteboard

sensor 1 useful
information
about the ball

behavioursensor 1

Reasoning
 Engine

time t1

time t2

© V. Estivill-Castro 23IIISIIIS

Independent and Asynchronous
 Reasoning Engine

Actuators

Sensors

Control

Reasoning Engine

© V. Estivill-Castro 24IIISIIIS

Reasoning Engine
 Template Method

1. New facts are labelled unknown

2. Execute predicates that are more efficient in
imperative languages

3. Run the necessary queries /proofs on DPL

© V. Estivill-Castro 25IIISIIIS

Illustration with state diagrams

 Exclusivity
ci∧cj = false ∀ i≠ j
 Exhaustivity

∨i=1
n

 ci = true

s1 sic1=eventu

s1 sjc2=eventv

si spct=eventx

© V. Estivill-Castro 26IIISIIIS

Convert State Diagram
into Behaviour Tree

 Draw down by
breadth-first
search

 Already visited
nodes are cloned
but not explored
again

1
2

4

3

5
6

1
2

3
6

1

3
4

5

© V. Estivill-Castro 27IIISIIIS

Convert a node in the tree to a
module in Plausible Logic

1. name(Node).
2. type

State_Type(S_0,..,S_k).
3. ∨{State(S_0),…,State(S_k)}.
4. ∨{¬State(S_i),¬State(S_j)}.

(∀ i ≠ j)
5. input{“e_i”}. (for i=1,…,k}
6. Default: ⇒ State(S_0).
7. Switch_S_0_S_i:{“e_i”} ⇒

State(S_i). (for i=1,…,k)
8. Switch_S_0_S_i > Default.

© V. Estivill-Castro 28IIISIIIS

Using the priority relation

1. Switch_S_0_S_i:{“e_u”} ⇒ State(S_i).
2. Switch_S_0_S_i > Default.
3. Switch_S_0_S_j:{“e_v”} ⇒ State(S_j).
4. Switch_S_0_S_j > Default.

5. Switch_S_0_S_p:{“e_v∧e_u”} ⇒ State(S_p).

6. Switch_S_0_S_p > Default.
7. Switch_S_0_S_p > Switch_S_0_S_i.
8. Switch_S_0_S_p > Switch_S_0_S_i.

eu

ev

eu∧ev

S_0
S_i

S_j

S_p

© V. Estivill-Castro 29IIISIIIS

A logic for looking after the lady
1. Usually there is no reason for alarm
2. The absence of owner for a long time is reason for alarm (this takes

precedence over rule 1)
3. Lying usually results from a fall
4. A fall is usually a reason for alarm (this takes precedence over rule 1)
5. Being on bed is not a fall (this takes precedence over rule 4)
6. Lying for a long time means owner is not getting up.
7. Not getting up is a reason for alarm (this takes precedence over rule 1)
8. If it is night, it is fine not to get up (this takes precedence over rule 7)
9. If there is a stranger looming over the lady, it is reason for an alarm

(takes precedence over rule 1)
10.Owner can’t be absent while on bed, or lying or lying for a long time.
11.Owner can’t be lying for a long time without lying for a short time.

© V. Estivill-Castro 30IIISIIIS

Diagrams a la Petri nets

© V. Estivill-Castro 31IIISIIIS

Prototype demonstrated at
RoboCup@Home 2007

ALARM

It’s cool

© V. Estivill-Castro 32IIISIIIS

A diagram for a poker player

© V. Estivill-Castro 33IIISIIIS

Code generated (example)
/* This is code Generated by the DPLGenerator
** This program was made by Mark Johnson 2008 (MiPAL)
** File Opponent.d
*/

name{Opponent}.

type Opponent(x<-Opponent_Type).

type Opponent_Type = {Loose_Passive, Loose_Aggressive, Tight_Passive, Tight_Aggressive}.

\/{Opponent(Loose_Passive), Opponent(Loose_Aggressive), Opponent(Tight_Passive), Opponent(Tight_Aggressive)}.

\/{~Opponent(Loose_Passive),~Opponent(Loose_Aggressive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Passive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Passive)}.
\/{~Opponent(Loose_Aggressive),~Opponent(Tight_Aggressive)}.
\/{~Opponent(Tight_Passive),~Opponent(Tight_Aggressive)}.

input{"aggressiveness_GT_aggressiveness_Threshold"}.
input{"tightness_GT_tightness_Threshold"}.

Default_Opponent: {}=>Opponent(Loose_Passive).

Switch_aggressiveness_GT_aggressiveness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold"} => Opponent(Loose_Aggressive).
Switch_aggressiveness_GT_aggressiveness_Threshold > Default_Opponent.

Switch_tightness_GT_tightness_Threshold: {"tightness_GT_tightness_Threshold"} => Opponent(Tight_Passive).
Switch_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold: {"aggressiveness_GT_aggressiveness_Threshold",
"tightness_GT_tightness_Threshold"} => Opponent(Tight_Aggressive).

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Default_Opponent.

Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_tightness_GT_tightness_Threshold.
Switch_aggressiveness_GT_aggressiveness_Threshold_n_tightness_GT_tightness_Threshold > Switch_aggressiveness_GT_aggressiveness_Threshold.

© V. Estivill-Castro 34IIISIIIS

Current Process
to Embed Design
into AIBO Robot
or Nao Robot

DESIGN

Java
simulator

C++
simulator

C++
for AIBO

Haskel implementation
of non-monotonic logic

Competition
statistics

DCL
code

Java
code

C++ glue
code

© V. Estivill-Castro 35IIISIIIS

Systems interacting with humans

© V. Estivill-Castro 36IIISIIIS

Reasonable Independence of
Reasoning Approach
 Forward chaining

• Start from the current state of the behaviour,
run the label of every exiting transition and
move to the next state accordingly

• Illustration
• Find information about opponent and then decide

on the personality to play
– if opponent is tight and passive, then it is good to

adopt an aggressive personality

© V. Estivill-Castro 37IIISIIIS

Reasonable Independence of
Reasoning Approach
 Backward chaining

• Run many of the predicates further down the line,
and then be ready to apply and compose them as we
move back into the chain of state transitions

• Illustration
• Find how would you play (your move) if you were

– tight aggressive
– loose aggressive
– lose passive
– tight passive

• consider the opinion of this experts in judging your play in
light of the stats you have on your oponent

© V. Estivill-Castro 38IIISIIIS

Modelling behaviours
1. Computer Assisted Software Engineering enables the

manipulation of modelling diagrams and the generation of
code from the models.

2. We introduce diagrams that use logic to describe
behaviour.

3. Our proposal extends techniques like Finite State
Machines, Petri Nets Object Models for Object
Orientation, and Behavior Trees.

4. We model the relationship between several inputs as
asserted conditions about the environment that an agent can
reason about (using logics) and resolve with respect to
knowledge of the environment.

© V. Estivill-Castro 39IIISIIIS

Summary
• Architecture for behaviors that integrate reactive

behavior and reasoned behavior

• Several patterns of software engineering
incorporated that enable integration of
intelligent capabilities

• Integrating knowledge representation and control
• validity / expresibility / platform independence /

software process and methodology
• A middleware

• discussed it mostly OO (modules)
• but seems possible to integrate agents

– illustration of asynchronous achievement of goals by
backward / forward chaining

© V. Estivill-Castro 40IIISIIIS

