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Model-­‐Driven	
  Development	
  

s  Widely	
  successful	
  approach	
  to	
  developing	
  software	
  

s  Ensures	
  traceability,	
  validation	
  against	
  requirements,	
  
and	
  platform	
  independence	
  	
  

s  	
  Tools	
  and	
  techniques	
  are	
  resulting	
  in	
  faster	
  and	
  
simpler	
  (easier	
  to	
  maintain)	
  products	
  and	
  
applications	
  than	
  traditional	
  language	
  parser/
compiler	
  or	
  interpreter	
  approaches	
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s  Finite	
  state	
  machines	
  (FSMs)	
  are	
  ubiquitous	
  to	
  describe	
  
system	
  behavior	
  
s  QP	
  (Samek,	
  2008),	
  Bot-­‐	
  Studio	
  (Michel,	
  2004)	
  StateWORKS	
  

(Wagner	
  et	
  al.,	
  2006)	
  and	
  MathWorks	
  StateFlow.	
  The	
  UML	
  
form	
  of	
  FSMs	
  derives	
  from	
  OMT	
  (Rumbaugh	
  et	
  al.,	
  1991,	
  
Chapter	
  5),	
  and	
  the	
  MDD	
  initiatives	
  of	
  Executable	
  UML	
  
(Mellor	
  and	
  Balcer,	
  2002).	
  

s  Large	
  penetration	
  in	
  industrial	
  settings	
  

s  Concurrent	
  execution	
  of	
  FSMs	
  and	
  model	
  checking	
  faces	
  the	
  
challenge	
  that	
  

	
  #	
  of	
  states	
  of	
  the	
  system	
  =	
  Π	
  #	
  of	
  states	
  of	
  each	
  subsystem	
  

Finite-­‐State	
  Machines	
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Formal	
  verification	
  and	
  
model	
  checking	
  

s  Formal	
  verification	
  validates	
  the	
  system,	
  but	
  
s  Systems	
  are	
  also	
  examined	
  using	
  fault	
  injection	
  and	
  

extensive	
  Failure	
  Mode	
  Effects	
  Analyses	
  (FMEAs)	
  	
  

s  The	
  model-­‐checking	
  exercise	
  is	
  repeated	
  in	
  a	
  system	
  
with	
  an	
  injected	
  fault	
  to	
  determine	
  the	
  effect	
  of	
  such	
  
fault	
  

s  Complemented	
  by	
  simulation	
  of	
  other	
  components	
  
and	
  their	
  faults	
  
s  Increases	
  the	
  number	
  of	
  states	
  in	
  the	
  system	
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Event-­‐driven	
  FSMs	
  
Most	
  common	
  approach	
  
s  System	
  is	
  in	
  a	
  state	
  

s  waiting	
  
s  does	
  not	
  change	
  what	
  is	
  

s  	
  doing/happening	
  	
  
s  until	
  event	
  arrives	
  

s  Events	
  change	
  the	
  state	
  of	
  the	
  system	
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Logic-­‐labeled	
  FSMs	
  
s  A	
  second	
  view	
  of	
  time	
  (since	
  Harel’s	
  seminal	
  paper)	
  
s  Machines	
  are	
  not	
  waiting	
  in	
  the	
  state	
  for	
  events	
  
s  The	
  machines	
  drive,	
  execute	
  
s  The	
  transitions	
  are	
  expressions	
  in	
  a	
  logic	
  

s  or	
  queries	
  to	
  an	
  expert	
  system	
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attack	
  for	
  a	
  
bit	
  

is	
  the	
  g
ame	
  over?

	
  

I	
  am	
  injured?	
  

did	
  the	
  team	
  lose	
  possession?	
  



Illustration	
  
s  The	
  Micro-­‐wave	
  Oven	
  
s  (ubiquitous	
  in	
  the	
  literature	
  of	
  model-­‐checking	
  and	
  

model-­‐driven	
  development)	
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Requirements Description 

R1 There  is a single control button available for the use of the oven. If the oven is closed and you 
push the button, the oven will start cooking (that is, energize the power-tube) for one minute 

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra 
minute. 

R3 Pushing the button when the door is open has no effect. 

R4 Whenever the oven is cooking or the door is open, the light in the oven will be on. 

R5 Opening the door stops the cooking. 

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user 
has placed food in the oven. 

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a 
warning beep to indicate that the cooking has finished. 

and	
  does	
  not	
  clear	
  the	
  timer	
  and	
  stops	
  the	
  timer	
  



Complete	
  model	
  of	
  the	
  
microwave	
  oven	
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a)

INIT
OnEntry
{int currentTime; currentTime=0;}
OnExit {}
{}

CHECK
OnEntry {}
OnExit {}
{timeLeft=0<currentTime;}

1

1

DECREMENT_1_MINUTE
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen

ADD_1_MINUTE
OnEntry {currentTime=1+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed
!doorOpen && timeLeft && timeout(60000000)

b)

OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

RINGING

OnExit {}
OnEntry {sound=1;}

{}

!timeLeft

c)

NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft d)

DARK
OnEntry {int light; light=0;}
OnExit {}
{}

ILLUMINATED
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

Figure 1: Complete model of one-minute microwave. a) A 4-state FSM for the timer. b) A 3-state machine for controlling
the bell. c) A 2-state machine for controlling the cooking engine. d) A 2-state machine for the light.

that we can demonstrate can be verified separately.
Thus, without loss of generality, model-checking of
the system can be partitioned. Similarly, the same
model-checking process that performs FMEA can
also be completed on the independent partitions while
still being able to provide the complete FMEA table
for the system. That is, our approach enables com-
plete validation of models as well as comprehensive
failure analysis in scenarios that would otherwise be
too complex or costly to formally verify.

There is a further aspect where our approach of-
fers a significant improvement on previous work.
Estivill-Castro, Hexel and Rosenblueth (Estivill-
Castro et al., 2012c) reduced the challenge of model-
checking concurrent executable models by prescrib-
ing a deterministic sequential schedule on a single
CPU. That approach reduced all possible permuta-
tions of states of computation to only those that
where derived from the schedule. Similarly, the
RRMDs (Satpathy et al., 2013) approach removes all
parallelism, and converts the program into a totally
deterministic behavior. Deterministic scheduling fa-
cilitates model-checking but prevents truly parallel
execution of the system. If such software is to ex-
ecute on hardware that supports more than one CPU
(or a multi-core CPU, which is becoming increasingly
common now, even on mobile or embedded systems),
then such a sequential approach is not able to not take
advantage of the true parallelism available on these
systems. With our approach here, we can identify
groups of modules that can be scheduled in parallel
and still have completely verified models under con-
sequential parallel schedules.

We will use two case studies to support the ar-
gument. Both examples are a widely used exam-
ple in the literature of model-checking, model-driven
development and safety: the one-minute microwave
and the mine pump. The one-minute microwave has
analogies for safety with well-publicised cases such
as the failure of the Therac-25 X-Ray machine.

Table 1: Microwave Oven requirements.
Req. Description

R 1
There is a single control button available for the use of the oven.
If the oven is closed and you push the button, the oven will start
cooking (that is, energise the power-tube) for one minute.

R 2 If the button is pushed while the oven is cooking, it will cause the
oven to cook for an extra minute.

R 3 Pushing the button when the door is open has no effect.

R 4 Whenever the oven is cooking or the door is open, the light in the
oven will be on.

R 5 Opening the door stops the cooking.

R 6
Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R 7
If the oven times out, the light and the power-tube are turned off
and then a beeper emits a warning beep to indicate that the cooking
has finished.

2 TACKLING COMPLEXITY

The one minute microwave is a good case study for
modelling requirements. Scholars discussing this ex-
ample typically present a series of requirements in
natural language like those in Table 1. Techniques
such as behavior-trees, Petri Nets, plain finite-state
machines (Wagner et al., 2006) and logic-labeled fi-
nite state machines (Estivill-Castro et al., 2012b) have
been used to model this case study.

Fig. 1 shows the model that uses logic-labeled
finite state machines (Estivill-Castro et al., 2012b)
for the microwave controller (Estivill-Castro et al.,
2012a). It consists of four finite state machines that
are executed in a round robin fashion. Through such
sequential execution, all possible state combinations
that can occur in the system can be derived (Estivill-
Castro et al., 2012c).

The sequential program corresponds to a
Kripke structure by standard transformation tech-
niques (Clarke et al., 2001, Chap. 2), and thus,
standard model-checking tools such as NuSMV can
be applied to establish that this software controller
fulfils safety properties. For the microwave, safety
properties include the following
Property-1 “Necessarily, the oven stops (after several



Model	
  Checking	
  and	
  
Validation	
  

s  Properties	
  
s  Property	
  1:	
  Necessarily,	
  the	
  oven	
  stops	
  (after	
  several	
  steps,	
  i.e.	
  

a	
  small,	
  finite	
  number	
  of	
  transitions	
  in	
  the	
  Kripke	
  structure)	
  
after	
  the	
  door	
  opens.”	
  	
  

s  Property-­‐2:	
  “It	
  is	
  necessary	
  to	
  pass	
  through	
  a	
  state	
  in	
  which	
  
the	
  door	
  is	
  closed	
  to	
  reach	
  a	
  state	
  in	
  which	
  the	
  motor	
  is	
  
working	
  and	
  the	
  machine	
  has	
  started.”	
  	
  

s  Property-­‐3:	
  “Necessarily,	
  the	
  oven	
  stops(after	
  several	
  steps,	
  
i.e.	
  again,	
  a	
  small,	
  finite	
  number	
  of	
  transitions	
  in	
  the	
  Kripke	
  
structure)	
  after	
  the	
  timer	
  has	
  expired.”	
  	
  

s  Property-­‐4:	
  “Cooking	
  may	
  go	
  on	
  for	
  ever	
  (e.g.	
  if	
  the	
  user	
  
repeatedly	
  keeps	
  pressing	
  the	
  add	
  button	
  while	
  the	
  timer	
  is	
  
still	
  running).”	
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Formal	
  description	
  of	
  the	
  
Property	
  in	
  LTL	
  

s  Using	
  NUSMV’s	
  code	
  
s  “the	
  cooking	
  must	
  stop	
  if	
  the	
  door	
  is	
  held	
  open”	
  
SPEC 
AG( (E$$doorOpen=1 & M0$$motor=1) ->  
         AX(  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX(   
                 (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  M0$$motor=0))))))))) 
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Failure	
  Mode	
  Analysis	
  

s  New	
  components	
  come	
  into	
  place	
  

s  Fault	
  injection	
  determines	
  the	
  effects	
  	
  
1.  to	
  remove	
  behavior	
  from	
  the	
  model	
  (an	
  omission	
  

failure)	
  and	
  test	
  all	
  properties,	
  and	
  	
  
2.  	
  to	
  modify	
  (a	
  value	
  failure)	
  behavior	
  and	
  test	
  all	
  

properties.	
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2 BULB_OFF
OnEntry {int On; On=0;}
OnExit {}
{}

1 BULB_ON
OnEntry {On=1;}
OnExit {}
{}

l ight

!l ight

Figure 3: A model of the light bulb hardware component.

bulb being poorly connected, or busted. These ad-
ditional components enable verification of some very
important initial and shut-down conditions of the sys-
tem. One can observe the behaviour of the software, if
it starts running with error states of other components.
For instance, in the microwave example, it could be
starting with a faulty door sensor always reporting a
doorOpen condition.

The point we want to make here is that these ad-
ditional models that represent the hardware as well
as the software, while very effective for FMEA table
completion, result in a much larger Kripke structure
for the model-checker. Simply put, now we have a
larger set of components that we are formally veri-
fying. More importantly, for each component that is
added, the total number of possible states (of the hard-
ware and software in simulation) gets multiplied by
the number of states of the additional component.

A very important observation is that, typically,
such hardware components only depend on a very
small software module – let’s call it the driver soft-
ware (in the above example, that role is played by the
state machine in Fig. 1b) – and they do not depend
on the many other components or software modules.
Thus, one shall identify independent sub-models, for
the purposes of model checking, whose state-space
would be much smaller. The end result is that the
model-checking that is repeated for every entry of the
FMEA table would be, in fact, much faster, having
an overall dramatic improvement in verification times
and the completion of the FMEA table.

3 INDEPENDENT SUB-MODEL
IDENTIFICATION

We propose a method to identify dependencies be-
tween components. We use the semantics and sequen-
tial scheduling (Estivill-Castro et al., 2012b; Estivill-
Castro et al., 2012a) proposed for logic-based finite-
state machines (FSMs). These FSMs consist of a
set S of states and a transition table T : S ⇥ E ! S
. There is an initial state s0 2 S, and for each state,
the transitions leading out of the state are ordered in
a sequence. Transitions are labeled by an expression
e 2 E, and these expressions are evaluated in deter-

ministic order (and time) by an expert system (the ex-
amples in the literature use Decisive Plausible Logic
(DPL) (Estivill-Castro et al., 2012b; Estivill-Castro
et al., 2012a), but the expressions can also be Boolean
expressions of an imperative programming language
such as C, C++, or Java (or any decidable logic, that
provides an answer in predictable time). The point is
that execution of an vector of these machines (such as
the ones in Fig. 1 in the previous section) is sequenced
deterministically by a pre-defined schedule. Each ma-
chine in the vector receives a pre-defined number of
ringlets it executes before execution passes to the next
machine in the vector. The execution token passes
back to the first machine after the last machine com-
pletes its allocated ringlets. A ringlet consist of eval-
uating the OnEntry section of the current state (if it
is the first time control arrives to this state from an-
other state in this machine), followed by evaluation of
the expressions in the list of transitions until an ex-
pression evaluates to true. In this case, the OnExit
section is evaluated and the ringlet concludes. If the
list of transitions is exhausted without any expres-
sion becoming true; then the Internal section of the
state completes and the ringlets also conclude. Thus a
ringlet is the complete assessment of the current state.

The shared variables between the different mod-
ules (FSMs) are called external variables and are man-
aged on a repository architecture named the white-
board (Hayes-Roth, 1988). When the execution token
arrives at a machine, it makes a local copy of any ex-
ternal variables it will use in the current state. We re-
fer to this as the READ footprint on the whiteboard.
Before the execution token of an FSMs is handed
back, the machine copies to the whiteboard any ex-
ternal variables it has modified locally. We refer to
this as the WRITE footprint of the state. This ensures
there is never a race condition between the FSMs that
are running concurrently under the predefined sched-
ule (and thus, there is no need for further mechanisms
to protect shared variables or synchronise FSMs).

For a FSM, the union of all the READ footprints
of its states is called the REQUIRES set of the FSM.
Similarly, the union of all the WRITE footprints of
its states is called the PROVIDES set. Note that
it has been shown that the REQUIRES set and the
PROVIDES set of an FSM can be computed from the
static analysis of the FSM description (Estivill-Castro
and Hexel, 2011).

We can compute a dependency (impact) graph be-
tween the FSMs in a vector, given the REQUIRES
set and the PROVIDES set of the FSMs in that vec-
tor. That is, we can find the dependency graph of the
modules that constitute the software. There, nodes
of the graph are the modules (the FSMs), while there



Identification	
  of	
  
independent	
  sub-­‐modules	
  

s  Whiteboard	
  infrastructure	
  holds	
  the	
  shared	
  variables	
  

s  Sequential	
  execution	
  control	
  the	
  state	
  explosion	
  

s  FSMs	
  have	
  a	
  READ	
  phase	
  before	
  they	
  execute	
  a	
  ringlet	
  

s  An	
  FSM’s	
  WRITE	
  of	
  the	
  variables	
  is	
  not	
  in	
  a	
  race	
  condition	
  
with	
  other	
  FSMs	
  

s  The	
  REQUIRES	
  set	
  of	
  an	
  FSMs	
  is	
  the	
  set	
  of	
  shared	
  
variables	
  it	
  reads	
  a	
  value	
  from	
  

s  The	
  PROVIDES	
  set	
  of	
  an	
  FSM	
  is	
  the	
  set	
  of	
  shared	
  variables	
  
it	
  modifies	
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We	
  identify	
  the	
  (effect)	
  
dependencies	
  among	
  FSMs	
  

s  A	
  dependency	
  graph	
  

s  Nodes	
  are	
  the	
  behavior	
  modules	
  (FSMs)	
  

s  a	
  directed	
  edge	
  from	
  FSM	
  M1	
  to	
  FSM	
  M2	
  if	
  the	
  
REQUIRES	
  set	
  of	
  M2	
  has	
  a	
  non-­‐empty	
  intersection	
  with	
  
the	
  PROVIDES	
  set	
  of	
  M1.	
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is a directed edge from FSM M1 to FSM M2 if the
REQUIRES set of M2 has a not empty intersection
with the PROVIDES set of M1.

It is clear that in this graph, if we find sev-
eral disjoint, connected components, then these are
completely independent, and any model-checking of
the entire system is equivalent to performing model-
checking of each connected component separately.
Simply put, none of the external variables of the
connected components are shared. That is, there is
no communication whatsoever between FSMs in one
connected component and another. They can actually
be scheduled in parallel and not sequentially, and each
would have no impact on the other. This is an extreme
case that would rarely appear in practice as it indicates
that a system is made of completely independent sys-
tems without communication between them. How-
ever, this is an important precursor to the principle we
shall discuss next, as such partitioning illustrates that
the model-checker no longer has to explore a Kripke
state space consisting of the product of all the state
spaces, but indeed we can get away with exploring
essentially separate spaces, only adding their number
of states (rather than multiplying them).

This directed graph can now be analysed by tra-
ditional digraph algorithms. Consider the following
procedure. Let v1 be a node with a non-zero in-
degree. We can find an ancestor (as v1 has an in-
degree larger or equal to 1). If the ancestor has an
in-degree greater than 0, we find an ancestor of the
ancestor. In fact, we conduct a depth-first search con-
sidering the edges in reverse orientation from v1. We
call this graph Av1 (and although we refer to it as the
ancestors of v1, we consider v1 2 Av1 ).
Lemma 3.1. For any vertex u1 2 Av1 , there is a di-
rected path from u1 to v1 in G; and therefore the
WRITE set of u1 may influence the READ set of v1.

Proof. This follows by induction and transitivity on
the length of the path from u1 to v1.

We refer to the construction of Av1 for a vertex v1
as the ancestor exploration step with focus v1.

As a consequence of Lemma 3.1 we have the fol-
lowing observation.
Observation 3.2. If there is a directed path from a
node v1 to a node v2, then v1 and v2 must be analysed
jointly.

Conversely, if there are two nodes v and u, and
there is no directed path from v to u and there is no
directed path in the other direction either (from u to
v), then then nodes u and v can be analysed separately.

Thus, what we are aiming for is a decomposition
of the graph G = (V,E) of dependencies into a cover
Ĉ = {C1, . . . ,Ct} so that

1" 2"
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3"
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7"

8"

9"

a)" b)"

Figure 4: A dependency graph, and b) its cover into 3 com-
ponents.

1. every node is included; that is
S

C2Ĉ C =V ,

2. each component C 2 Ĉ of this cover has the prop-
erty that if u and v are vertices in C, then there is
a path in C form u to v or a path in C from v to u,

3. each component is ancestor-maximal, that is,
there is no vertex v 62C so that there is a path from
v to some vertex u 2C.

Moreover, we aim for a cover with minimum number
of components. For illustration, consider the graph in
Fig. 4a). This graph’s cover is shown by the 3 compo-
nents in Fig. 4b). Note that there is no further ancestor
to any vertex that belongs to a component outside the
component. Also, vertex 1 and vertex 2 are in dif-
ferent components, as in the graph itself, there is no
directed path in either direction.

To compute this cover we recall the classical de-
scription (Aho et al., 1974) of depth-first search (both
for a directed graph and an undirected graph). We
reduce the problem to connected components by ap-
plying depth-first search to the undirected version of
the graph. Thus, in what follows, we assume that the
undirected version of the graph is connected. Then,
we can take any vertex v1 with a non-zero in-degree
and find its ancestors by using directed depth first
search (but following the directed edges in reverse
direction). Moreover, the depth directed depth first
search produces (Aho et al., 1974, page 188)
tree edges which lead to new vertices during the

search and form the topological-sort tree,
forward edges which go from ancestors to proper de-

scendants but are no tree edges
back edges which go from descendants to ancestors,
cross edges which go between vertices that are nei-

ther ancestors not descendants of one another.
Thus, the depth-first search in reverse direction from
v1 has leave nodes of the topological-sort tree. Let u
be a leave node. If such a leave u does not have a back
edge, then u is a maximal ancestor. The starting set of
ancestors consist of u alone. If u has a back edge,
then u is in a cycle and we take all the vertices in all
the cycles involving u as the starting set of ancestors.



Observations	
  

s  Definition:	
  If	
  v1	
  is	
  a	
  vertex	
  of	
  in-­‐degree	
  NOT	
  0,	
  Av1	
  is	
  
the	
  set	
  of	
  ancestor	
  of	
  v1	
  and	
  includes	
  v1	
  

s  Lemma	
  3.1.	
  For	
  any	
  vertex	
  u1	
  ∈	
  Av1	
  ,	
  there	
  is	
  a	
  directed	
  
path	
  from	
  u1	
  	
  to	
  v1	
  	
  in	
  G;	
  and	
  therefore	
  the	
  WRITE	
  set	
  
of	
  u1	
  	
  may	
  influence	
  the	
  READ	
  set	
  of	
  v1	
  .	
  	
  

s  Observation	
  3.2.	
  If	
  there	
  is	
  a	
  directed	
  path	
  from	
  a	
  
node	
  v1to	
  a	
  node	
  v2,	
  then	
  v1	
  and	
  v2	
  must	
  be	
  analyzed	
  
jointly.	
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The	
  cover	
  

s  A	
  decomposition	
  of	
  the	
  graph	
  G	
  =	
  (V,	
  E	
  )	
  of	
  
dependencies	
  into	
  a	
  cover	
  C	
  ={C1,...,Ct}	
  so	
  that	
  	
  

1.  every	
  node	
  is	
  included;	
  that	
  is	
  	
  UC∈C	
  C	
  =	
  V	
  ,	
  (is	
  a	
  cover)	
  

2.  each	
  component	
  C	
  ∈	
  C	
  of	
  this	
  cover	
  has	
  the	
  property	
  
that	
  if	
  u	
  and	
  v	
  are	
  vertices	
  in	
  C,	
  then	
  

a.  	
  there	
  is	
  a	
  path	
  in	
  C	
  form	
  u	
  to	
  v	
  or	
  	
  
b.  a	
  path	
  in	
  C	
  from	
  v	
  to	
  u,	
  	
  

3.  each	
  component	
  is	
  ancestor-­‐maximal,	
  that	
  is,	
  there	
  is	
  
no	
  vertex	
  v	
  outside	
  	
  C	
  so	
  that	
  there	
  is	
  a	
  path	
  from	
  v	
  to	
  
some	
  vertex	
  u	
  ∈	
  C.	
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Algorithm	
  
s  Depth	
  First	
  Search	
  
s  Classification	
  of	
  edges	
  

s  tree	
  edges	
  which	
  lead	
  to	
  new	
  vertices	
  during	
  the	
  search	
  and	
  
form	
  the	
  topological-­‐sort	
  tree,	
  	
  

s  forward	
  edges	
  which	
  go	
  from	
  ancestors	
  to	
  proper	
  
descendants	
  but	
  are	
  no	
  tree	
  edges	
  	
  

s  back	
  edges	
  which	
  go	
  from	
  descendants	
  to	
  ancestors,	
  cross	
  
edges	
  which	
  go	
  between	
  vertices	
  that	
  are	
  neither	
  ancestors	
  
not	
  descendants	
  of	
  one	
  another.	
  	
  

s  Find	
  maximal	
  ancestors	
  of	
  v1	
  by	
  Depth	
  First	
  Search	
  in	
  
reverse	
  direction	
  

s  Directed	
  forward	
  Depth	
  First	
  Search	
  from	
  Maximal	
  
ancestors	
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When	
  do	
  we	
  find	
  
components	
  

s  there	
  is	
  a	
  node	
  v	
  that	
  has	
  two	
  or	
  more	
  children	
  in	
  the	
  
topological-­‐sort	
  tree,	
  	
  

s  there	
  is	
  no	
  back	
  edge	
  from	
  any	
  descendant	
  of	
  v	
  in	
  
the	
  topological-­‐sort	
  to	
  an	
  ancestor	
  of	
  v	
  	
  

s  there	
  is	
  no	
  forward	
  edge	
  from	
  an	
  ancestor	
  of	
  v	
  to	
  a	
  
descendant	
  of	
  v.	
  	
  

s  Plus	
  some	
  other	
  checks	
  
s  see	
  paper	
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Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.
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Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.
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Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/
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Sensor/

Air/Flow/
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Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
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independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
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7 orders of magnitude in time for the alarm).
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Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.
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Summary	
  
s  Formal	
  verification	
  by	
  model	
  checking	
  and	
  the	
  

construction	
  of	
  FMEA	
  tables	
  had	
  been	
  reported	
  to	
  
s  	
  take	
  CPU	
  times	
  of	
  the	
  order	
  of	
  days	
  or	
  weeks	
  for	
  some	
  well-­‐

discussed	
  case	
  studies	
  (Grunske	
  et	
  al.,	
  2011).	
  	
  

s  We	
  have	
  shown	
  here	
  that,	
  for	
  logic-­‐labeled	
  FSMs,	
  
s  	
  we	
  can	
  efficiently	
  split	
  the	
  corresponding	
  dependency	
  graph	
  

and	
  	
  
s  obtain	
  components	
  of	
  the	
  graph	
  that	
  can	
  be	
  analyzed	
  

independently.	
  	
  

s  Consequently	
  
#	
  of	
  states	
  of	
  the	
  system	
  =	
  Π	
  #	
  of	
  states	
  of	
  each	
  subsystem	
  
s  	
  replaced	
  by	
  

#	
  of	
  states	
  of	
  the	
  system	
  =	
  Σ	
  #	
  of	
  states	
  of	
  each	
  subsystem	
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Conclusions	
  

s  With	
  decomposition,	
  	
  
s  even	
  only	
  identifying	
  two	
  or	
  three	
  such	
  components,	
  

s  results	
  in	
  improvements	
  in	
  performance	
  of	
  several	
  orders	
  
of	
  magnitude	
  for	
  a	
  single	
  model-­‐	
  checking	
  exercise	
  	
  

s  Applicable	
  particularly	
  to	
  loosely	
  coupled	
  systems	
  

s  Kripke	
  structures	
  in	
  description	
  languages	
  of	
  
common	
  tools	
  such	
  as	
  NuSMV	
  can	
  be	
  generated	
  and	
  
verified	
  much	
  more	
  efficiently.	
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