

Outline	

s  Motivation	

s  Model-­‐Driven	
 Development	
 (MDD)	

s  Finite	
 State	
 Machines	

s  Logic-­‐labeled	
 Finite-­‐State	
 Machines	

s  Formal	
 Verification	
 and	
 Model	
 Checking	

s  Use	
 for	
 Failure	
 Mode	
 Effect	
 Analysis	
 (FMEA)	

s  Examples	
 and	
 Results	

s  Conclusions	

2	

Model-­‐Driven	
 Development	

s  Widely	
 successful	
 approach	
 to	
 developing	
 software	

s  Ensures	
 traceability,	
 validation	
 against	
 requirements,	

and	
 platform	
 independence	
 	

s  	
 Tools	
 and	
 techniques	
 are	
 resulting	
 in	
 faster	
 and	

simpler	
 (easier	
 to	
 maintain)	
 products	
 and	

applications	
 than	
 traditional	
 language	
 parser/
compiler	
 or	
 interpreter	
 approaches	
 	

3	

s  Finite	
 state	
 machines	
 (FSMs)	
 are	
 ubiquitous	
 to	
 describe	

system	
 behavior	

s  QP	
 (Samek,	
 2008),	
 Bot-­‐	
 Studio	
 (Michel,	
 2004)	
 StateWORKS	

(Wagner	
 et	
 al.,	
 2006)	
 and	
 MathWorks	
 StateFlow.	
 The	
 UML	

form	
 of	
 FSMs	
 derives	
 from	
 OMT	
 (Rumbaugh	
 et	
 al.,	
 1991,	

Chapter	
 5),	
 and	
 the	
 MDD	
 initiatives	
 of	
 Executable	
 UML	

(Mellor	
 and	
 Balcer,	
 2002).	

s  Large	
 penetration	
 in	
 industrial	
 settings	

s  Concurrent	
 execution	
 of	
 FSMs	
 and	
 model	
 checking	
 faces	
 the	

challenge	
 that	

	
 #	
 of	
 states	
 of	
 the	
 system	
 =	
 Π	
 #	
 of	
 states	
 of	
 each	
 subsystem	

Finite-­‐State	
 Machines	

4	

Formal	
 verification	
 and	

model	
 checking	

s  Formal	
 verification	
 validates	
 the	
 system,	
 but	

s  Systems	
 are	
 also	
 examined	
 using	
 fault	
 injection	
 and	

extensive	
 Failure	
 Mode	
 Effects	
 Analyses	
 (FMEAs)	
 	

s  The	
 model-­‐checking	
 exercise	
 is	
 repeated	
 in	
 a	
 system	

with	
 an	
 injected	
 fault	
 to	
 determine	
 the	
 effect	
 of	
 such	

fault	

s  Complemented	
 by	
 simulation	
 of	
 other	
 components	

and	
 their	
 faults	

s  Increases	
 the	
 number	
 of	
 states	
 in	
 the	
 system	

5	

Event-­‐driven	
 FSMs	

Most	
 common	
 approach	

s  System	
 is	
 in	
 a	
 state	

s  waiting	

s  does	
 not	
 change	
 what	
 is	

s  	
 doing/happening	
 	

s  until	
 event	
 arrives	

s  Events	
 change	
 the	
 state	
 of	
 the	
 system	

6	

Attack	

Defend	

gain	

possession	
 lose	

possession	

Logic-­‐labeled	
 FSMs	

s  A	
 second	
 view	
 of	
 time	
 (since	
 Harel’s	
 seminal	
 paper)	

s  Machines	
 are	
 not	
 waiting	
 in	
 the	
 state	
 for	
 events	

s  The	
 machines	
 drive,	
 execute	

s  The	
 transitions	
 are	
 expressions	
 in	
 a	
 logic	

s  or	
 queries	
 to	
 an	
 expert	
 system	

7	

attack	
 for	
 a	

bit	

is	
 the	
 g
ame	
 over?

	

I	
 am	
 injured?	

did	
 the	
 team	
 lose	
 possession?	

Illustration	

s  The	
 Micro-­‐wave	
 Oven	

s  (ubiquitous	
 in	
 the	
 literature	
 of	
 model-­‐checking	
 and	

model-­‐driven	
 development)	

8	

Requirements Description

R1 There is a single control button available for the use of the oven. If the oven is closed and you
push the button, the oven will start cooking (that is, energize the power-tube) for one minute

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra
minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the oven will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user
has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a
warning beep to indicate that the cooking has finished.

and	
 does	
 not	
 clear	
 the	
 timer	
 and	
 stops	
 the	
 timer	

Complete	
 model	
 of	
 the	

microwave	
 oven	
 	

9	

a)

INIT
OnEntry
{int currentTime; currentTime=0;}
OnExit {}
{}

CHECK
OnEntry {}
OnExit {}
{timeLeft=0<currentTime;}

1

1

DECREMENT_1_MINUTE
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen

ADD_1_MINUTE
OnEntry {currentTime=1+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed
!doorOpen && timeLeft && timeout(60000000)

b)

OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

RINGING

OnExit {}
OnEntry {sound=1;}

{}

!timeLeft

c)

NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft d)

DARK
OnEntry {int light; light=0;}
OnExit {}
{}

ILLUMINATED
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

Figure 1: Complete model of one-minute microwave. a) A 4-state FSM for the timer. b) A 3-state machine for controlling
the bell. c) A 2-state machine for controlling the cooking engine. d) A 2-state machine for the light.

that we can demonstrate can be verified separately.
Thus, without loss of generality, model-checking of
the system can be partitioned. Similarly, the same
model-checking process that performs FMEA can
also be completed on the independent partitions while
still being able to provide the complete FMEA table
for the system. That is, our approach enables com-
plete validation of models as well as comprehensive
failure analysis in scenarios that would otherwise be
too complex or costly to formally verify.

There is a further aspect where our approach of-
fers a significant improvement on previous work.
Estivill-Castro, Hexel and Rosenblueth (Estivill-
Castro et al., 2012c) reduced the challenge of model-
checking concurrent executable models by prescrib-
ing a deterministic sequential schedule on a single
CPU. That approach reduced all possible permuta-
tions of states of computation to only those that
where derived from the schedule. Similarly, the
RRMDs (Satpathy et al., 2013) approach removes all
parallelism, and converts the program into a totally
deterministic behavior. Deterministic scheduling fa-
cilitates model-checking but prevents truly parallel
execution of the system. If such software is to ex-
ecute on hardware that supports more than one CPU
(or a multi-core CPU, which is becoming increasingly
common now, even on mobile or embedded systems),
then such a sequential approach is not able to not take
advantage of the true parallelism available on these
systems. With our approach here, we can identify
groups of modules that can be scheduled in parallel
and still have completely verified models under con-
sequential parallel schedules.

We will use two case studies to support the ar-
gument. Both examples are a widely used exam-
ple in the literature of model-checking, model-driven
development and safety: the one-minute microwave
and the mine pump. The one-minute microwave has
analogies for safety with well-publicised cases such
as the failure of the Therac-25 X-Ray machine.

Table 1: Microwave Oven requirements.
Req. Description

R 1
There is a single control button available for the use of the oven.
If the oven is closed and you push the button, the oven will start
cooking (that is, energise the power-tube) for one minute.

R 2 If the button is pushed while the oven is cooking, it will cause the
oven to cook for an extra minute.

R 3 Pushing the button when the door is open has no effect.

R 4 Whenever the oven is cooking or the door is open, the light in the
oven will be on.

R 5 Opening the door stops the cooking.

R 6
Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R 7
If the oven times out, the light and the power-tube are turned off
and then a beeper emits a warning beep to indicate that the cooking
has finished.

2 TACKLING COMPLEXITY

The one minute microwave is a good case study for
modelling requirements. Scholars discussing this ex-
ample typically present a series of requirements in
natural language like those in Table 1. Techniques
such as behavior-trees, Petri Nets, plain finite-state
machines (Wagner et al., 2006) and logic-labeled fi-
nite state machines (Estivill-Castro et al., 2012b) have
been used to model this case study.

Fig. 1 shows the model that uses logic-labeled
finite state machines (Estivill-Castro et al., 2012b)
for the microwave controller (Estivill-Castro et al.,
2012a). It consists of four finite state machines that
are executed in a round robin fashion. Through such
sequential execution, all possible state combinations
that can occur in the system can be derived (Estivill-
Castro et al., 2012c).

The sequential program corresponds to a
Kripke structure by standard transformation tech-
niques (Clarke et al., 2001, Chap. 2), and thus,
standard model-checking tools such as NuSMV can
be applied to establish that this software controller
fulfils safety properties. For the microwave, safety
properties include the following
Property-1 “Necessarily, the oven stops (after several

Model	
 Checking	
 and	

Validation	

s  Properties	

s  Property	
 1:	
 Necessarily,	
 the	
 oven	
 stops	
 (after	
 several	
 steps,	
 i.e.	

a	
 small,	
 finite	
 number	
 of	
 transitions	
 in	
 the	
 Kripke	
 structure)	

after	
 the	
 door	
 opens.”	
 	

s  Property-­‐2:	
 “It	
 is	
 necessary	
 to	
 pass	
 through	
 a	
 state	
 in	
 which	

the	
 door	
 is	
 closed	
 to	
 reach	
 a	
 state	
 in	
 which	
 the	
 motor	
 is	

working	
 and	
 the	
 machine	
 has	
 started.”	
 	

s  Property-­‐3:	
 “Necessarily,	
 the	
 oven	
 stops(after	
 several	
 steps,	

i.e.	
 again,	
 a	
 small,	
 finite	
 number	
 of	
 transitions	
 in	
 the	
 Kripke	

structure)	
 after	
 the	
 timer	
 has	
 expired.”	
 	

s  Property-­‐4:	
 “Cooking	
 may	
 go	
 on	
 for	
 ever	
 (e.g.	
 if	
 the	
 user	

repeatedly	
 keeps	
 pressing	
 the	
 add	
 button	
 while	
 the	
 timer	
 is	

still	
 running).”	
 	

10	

Formal	
 description	
 of	
 the	

Property	
 in	
 LTL	

s  Using	
 NUSMV’s	
 code	

s  “the	
 cooking	
 must	
 stop	
 if	
 the	
 door	
 is	
 held	
 open”	

SPEC
AG((E$$doorOpen=1 & M0$$motor=1) ->
 AX((E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 M0$$motor=0)))))))))
	

11	

Failure	
 Mode	
 Analysis	

s  New	
 components	
 come	
 into	
 place	

s  Fault	
 injection	
 determines	
 the	
 effects	
 	

1.  to	
 remove	
 behavior	
 from	
 the	
 model	
 (an	
 omission	

failure)	
 and	
 test	
 all	
 properties,	
 and	
 	

2.  	
 to	
 modify	
 (a	
 value	
 failure)	
 behavior	
 and	
 test	
 all	

properties.	
 	

12	

2 BULB_OFF
OnEntry {int On; On=0;}
OnExit {}
{}

1 BULB_ON
OnEntry {On=1;}
OnExit {}
{}

l ight

!l ight

Figure 3: A model of the light bulb hardware component.

bulb being poorly connected, or busted. These ad-
ditional components enable verification of some very
important initial and shut-down conditions of the sys-
tem. One can observe the behaviour of the software, if
it starts running with error states of other components.
For instance, in the microwave example, it could be
starting with a faulty door sensor always reporting a
doorOpen condition.

The point we want to make here is that these ad-
ditional models that represent the hardware as well
as the software, while very effective for FMEA table
completion, result in a much larger Kripke structure
for the model-checker. Simply put, now we have a
larger set of components that we are formally veri-
fying. More importantly, for each component that is
added, the total number of possible states (of the hard-
ware and software in simulation) gets multiplied by
the number of states of the additional component.

A very important observation is that, typically,
such hardware components only depend on a very
small software module – let’s call it the driver soft-
ware (in the above example, that role is played by the
state machine in Fig. 1b) – and they do not depend
on the many other components or software modules.
Thus, one shall identify independent sub-models, for
the purposes of model checking, whose state-space
would be much smaller. The end result is that the
model-checking that is repeated for every entry of the
FMEA table would be, in fact, much faster, having
an overall dramatic improvement in verification times
and the completion of the FMEA table.

3 INDEPENDENT SUB-MODEL
IDENTIFICATION

We propose a method to identify dependencies be-
tween components. We use the semantics and sequen-
tial scheduling (Estivill-Castro et al., 2012b; Estivill-
Castro et al., 2012a) proposed for logic-based finite-
state machines (FSMs). These FSMs consist of a
set S of states and a transition table T : S ⇥ E ! S
. There is an initial state s0 2 S, and for each state,
the transitions leading out of the state are ordered in
a sequence. Transitions are labeled by an expression
e 2 E, and these expressions are evaluated in deter-

ministic order (and time) by an expert system (the ex-
amples in the literature use Decisive Plausible Logic
(DPL) (Estivill-Castro et al., 2012b; Estivill-Castro
et al., 2012a), but the expressions can also be Boolean
expressions of an imperative programming language
such as C, C++, or Java (or any decidable logic, that
provides an answer in predictable time). The point is
that execution of an vector of these machines (such as
the ones in Fig. 1 in the previous section) is sequenced
deterministically by a pre-defined schedule. Each ma-
chine in the vector receives a pre-defined number of
ringlets it executes before execution passes to the next
machine in the vector. The execution token passes
back to the first machine after the last machine com-
pletes its allocated ringlets. A ringlet consist of eval-
uating the OnEntry section of the current state (if it
is the first time control arrives to this state from an-
other state in this machine), followed by evaluation of
the expressions in the list of transitions until an ex-
pression evaluates to true. In this case, the OnExit
section is evaluated and the ringlet concludes. If the
list of transitions is exhausted without any expres-
sion becoming true; then the Internal section of the
state completes and the ringlets also conclude. Thus a
ringlet is the complete assessment of the current state.

The shared variables between the different mod-
ules (FSMs) are called external variables and are man-
aged on a repository architecture named the white-
board (Hayes-Roth, 1988). When the execution token
arrives at a machine, it makes a local copy of any ex-
ternal variables it will use in the current state. We re-
fer to this as the READ footprint on the whiteboard.
Before the execution token of an FSMs is handed
back, the machine copies to the whiteboard any ex-
ternal variables it has modified locally. We refer to
this as the WRITE footprint of the state. This ensures
there is never a race condition between the FSMs that
are running concurrently under the predefined sched-
ule (and thus, there is no need for further mechanisms
to protect shared variables or synchronise FSMs).

For a FSM, the union of all the READ footprints
of its states is called the REQUIRES set of the FSM.
Similarly, the union of all the WRITE footprints of
its states is called the PROVIDES set. Note that
it has been shown that the REQUIRES set and the
PROVIDES set of an FSM can be computed from the
static analysis of the FSM description (Estivill-Castro
and Hexel, 2011).

We can compute a dependency (impact) graph be-
tween the FSMs in a vector, given the REQUIRES
set and the PROVIDES set of the FSMs in that vec-
tor. That is, we can find the dependency graph of the
modules that constitute the software. There, nodes
of the graph are the modules (the FSMs), while there

Identification	
 of	

independent	
 sub-­‐modules	

s  Whiteboard	
 infrastructure	
 holds	
 the	
 shared	
 variables	

s  Sequential	
 execution	
 control	
 the	
 state	
 explosion	

s  FSMs	
 have	
 a	
 READ	
 phase	
 before	
 they	
 execute	
 a	
 ringlet	

s  An	
 FSM’s	
 WRITE	
 of	
 the	
 variables	
 is	
 not	
 in	
 a	
 race	
 condition	

with	
 other	
 FSMs	

s  The	
 REQUIRES	
 set	
 of	
 an	
 FSMs	
 is	
 the	
 set	
 of	
 shared	

variables	
 it	
 reads	
 a	
 value	
 from	

s  The	
 PROVIDES	
 set	
 of	
 an	
 FSM	
 is	
 the	
 set	
 of	
 shared	
 variables	

it	
 modifies	

13	

We	
 identify	
 the	
 (effect)	

dependencies	
 among	
 FSMs	

s  A	
 dependency	
 graph	

s  Nodes	
 are	
 the	
 behavior	
 modules	
 (FSMs)	

s  a	
 directed	
 edge	
 from	
 FSM	
 M1	
 to	
 FSM	
 M2	
 if	
 the	

REQUIRES	
 set	
 of	
 M2	
 has	
 a	
 non-­‐empty	
 intersection	
 with	

the	
 PROVIDES	
 set	
 of	
 M1.	
 	

14	

is a directed edge from FSM M1 to FSM M2 if the
REQUIRES set of M2 has a not empty intersection
with the PROVIDES set of M1.

It is clear that in this graph, if we find sev-
eral disjoint, connected components, then these are
completely independent, and any model-checking of
the entire system is equivalent to performing model-
checking of each connected component separately.
Simply put, none of the external variables of the
connected components are shared. That is, there is
no communication whatsoever between FSMs in one
connected component and another. They can actually
be scheduled in parallel and not sequentially, and each
would have no impact on the other. This is an extreme
case that would rarely appear in practice as it indicates
that a system is made of completely independent sys-
tems without communication between them. How-
ever, this is an important precursor to the principle we
shall discuss next, as such partitioning illustrates that
the model-checker no longer has to explore a Kripke
state space consisting of the product of all the state
spaces, but indeed we can get away with exploring
essentially separate spaces, only adding their number
of states (rather than multiplying them).

This directed graph can now be analysed by tra-
ditional digraph algorithms. Consider the following
procedure. Let v1 be a node with a non-zero in-
degree. We can find an ancestor (as v1 has an in-
degree larger or equal to 1). If the ancestor has an
in-degree greater than 0, we find an ancestor of the
ancestor. In fact, we conduct a depth-first search con-
sidering the edges in reverse orientation from v1. We
call this graph Av1 (and although we refer to it as the
ancestors of v1, we consider v1 2 Av1).
Lemma 3.1. For any vertex u1 2 Av1 , there is a di-
rected path from u1 to v1 in G; and therefore the
WRITE set of u1 may influence the READ set of v1.

Proof. This follows by induction and transitivity on
the length of the path from u1 to v1.

We refer to the construction of Av1 for a vertex v1
as the ancestor exploration step with focus v1.

As a consequence of Lemma 3.1 we have the fol-
lowing observation.
Observation 3.2. If there is a directed path from a
node v1 to a node v2, then v1 and v2 must be analysed
jointly.

Conversely, if there are two nodes v and u, and
there is no directed path from v to u and there is no
directed path in the other direction either (from u to
v), then then nodes u and v can be analysed separately.

Thus, what we are aiming for is a decomposition
of the graph G = (V,E) of dependencies into a cover
Ĉ = {C1, . . . ,Ct} so that

1" 2"

3"

4"

5"

6"

7"

8"

9"

1"

3"

4"

5"

9"

2"

3"

4"

5"

9"

5"

6"

7"

8"

9"

a)" b)"

Figure 4: A dependency graph, and b) its cover into 3 com-
ponents.

1. every node is included; that is
S

C2Ĉ C =V ,

2. each component C 2 Ĉ of this cover has the prop-
erty that if u and v are vertices in C, then there is
a path in C form u to v or a path in C from v to u,

3. each component is ancestor-maximal, that is,
there is no vertex v 62C so that there is a path from
v to some vertex u 2C.

Moreover, we aim for a cover with minimum number
of components. For illustration, consider the graph in
Fig. 4a). This graph’s cover is shown by the 3 compo-
nents in Fig. 4b). Note that there is no further ancestor
to any vertex that belongs to a component outside the
component. Also, vertex 1 and vertex 2 are in dif-
ferent components, as in the graph itself, there is no
directed path in either direction.

To compute this cover we recall the classical de-
scription (Aho et al., 1974) of depth-first search (both
for a directed graph and an undirected graph). We
reduce the problem to connected components by ap-
plying depth-first search to the undirected version of
the graph. Thus, in what follows, we assume that the
undirected version of the graph is connected. Then,
we can take any vertex v1 with a non-zero in-degree
and find its ancestors by using directed depth first
search (but following the directed edges in reverse
direction). Moreover, the depth directed depth first
search produces (Aho et al., 1974, page 188)
tree edges which lead to new vertices during the

search and form the topological-sort tree,
forward edges which go from ancestors to proper de-

scendants but are no tree edges
back edges which go from descendants to ancestors,
cross edges which go between vertices that are nei-

ther ancestors not descendants of one another.
Thus, the depth-first search in reverse direction from
v1 has leave nodes of the topological-sort tree. Let u
be a leave node. If such a leave u does not have a back
edge, then u is a maximal ancestor. The starting set of
ancestors consist of u alone. If u has a back edge,
then u is in a cycle and we take all the vertices in all
the cycles involving u as the starting set of ancestors.

Observations	

s  Definition:	
 If	
 v1	
 is	
 a	
 vertex	
 of	
 in-­‐degree	
 NOT	
 0,	
 Av1	
 is	

the	
 set	
 of	
 ancestor	
 of	
 v1	
 and	
 includes	
 v1	

s  Lemma	
 3.1.	
 For	
 any	
 vertex	
 u1	
 ∈	
 Av1	
 ,	
 there	
 is	
 a	
 directed	

path	
 from	
 u1	
 	
 to	
 v1	
 	
 in	
 G;	
 and	
 therefore	
 the	
 WRITE	
 set	

of	
 u1	
 	
 may	
 influence	
 the	
 READ	
 set	
 of	
 v1	
 .	
 	

s  Observation	
 3.2.	
 If	
 there	
 is	
 a	
 directed	
 path	
 from	
 a	

node	
 v1to	
 a	
 node	
 v2,	
 then	
 v1	
 and	
 v2	
 must	
 be	
 analyzed	

jointly.	
 	

15	

The	
 cover	

s  A	
 decomposition	
 of	
 the	
 graph	
 G	
 =	
 (V,	
 E	
)	
 of	

dependencies	
 into	
 a	
 cover	
 C	
 ={C1,...,Ct}	
 so	
 that	
 	

1.  every	
 node	
 is	
 included;	
 that	
 is	
 	
 UC∈C	
 C	
 =	
 V	
 ,	
 (is	
 a	
 cover)	

2.  each	
 component	
 C	
 ∈	
 C	
 of	
 this	
 cover	
 has	
 the	
 property	

that	
 if	
 u	
 and	
 v	
 are	
 vertices	
 in	
 C,	
 then	

a.  	
 there	
 is	
 a	
 path	
 in	
 C	
 form	
 u	
 to	
 v	
 or	
 	

b.  a	
 path	
 in	
 C	
 from	
 v	
 to	
 u,	
 	

3.  each	
 component	
 is	
 ancestor-­‐maximal,	
 that	
 is,	
 there	
 is	

no	
 vertex	
 v	
 outside	
 	
 C	
 so	
 that	
 there	
 is	
 a	
 path	
 from	
 v	
 to	

some	
 vertex	
 u	
 ∈	
 C.	
 	

16	

Algorithm	

s  Depth	
 First	
 Search	

s  Classification	
 of	
 edges	

s  tree	
 edges	
 which	
 lead	
 to	
 new	
 vertices	
 during	
 the	
 search	
 and	

form	
 the	
 topological-­‐sort	
 tree,	
 	

s  forward	
 edges	
 which	
 go	
 from	
 ancestors	
 to	
 proper	

descendants	
 but	
 are	
 no	
 tree	
 edges	
 	

s  back	
 edges	
 which	
 go	
 from	
 descendants	
 to	
 ancestors,	
 cross	

edges	
 which	
 go	
 between	
 vertices	
 that	
 are	
 neither	
 ancestors	

not	
 descendants	
 of	
 one	
 another.	
 	

s  Find	
 maximal	
 ancestors	
 of	
 v1	
 by	
 Depth	
 First	
 Search	
 in	

reverse	
 direction	

s  Directed	
 forward	
 Depth	
 First	
 Search	
 from	
 Maximal	

ancestors	

17	

When	
 do	
 we	
 find	

components	

s  there	
 is	
 a	
 node	
 v	
 that	
 has	
 two	
 or	
 more	
 children	
 in	
 the	

topological-­‐sort	
 tree,	
 	

s  there	
 is	
 no	
 back	
 edge	
 from	
 any	
 descendant	
 of	
 v	
 in	

the	
 topological-­‐sort	
 to	
 an	
 ancestor	
 of	
 v	
 	

s  there	
 is	
 no	
 forward	
 edge	
 from	
 an	
 ancestor	
 of	
 v	
 to	
 a	

descendant	
 of	
 v.	
 	

s  Plus	
 some	
 other	
 checks	

s  see	
 paper	

18	

Example	
 with	
 the	

microwave	
 oven	

19	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

The	
 cover	

20	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

Comparison	

21	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

Another	
 example,	
 the	

mine	
 pump	

22	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Logic-­‐labeled	
 FSMs	
 for	
 the	

mine	
 pump	

23	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

The	
 graph	
 for	
 the	
 mine	

pump	

24	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Comparison	

25	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Summary	

s  Formal	
 verification	
 by	
 model	
 checking	
 and	
 the	

construction	
 of	
 FMEA	
 tables	
 had	
 been	
 reported	
 to	

s  	
 take	
 CPU	
 times	
 of	
 the	
 order	
 of	
 days	
 or	
 weeks	
 for	
 some	
 well-­‐

discussed	
 case	
 studies	
 (Grunske	
 et	
 al.,	
 2011).	
 	

s  We	
 have	
 shown	
 here	
 that,	
 for	
 logic-­‐labeled	
 FSMs,	

s  	
 we	
 can	
 efficiently	
 split	
 the	
 corresponding	
 dependency	
 graph	

and	
 	

s  obtain	
 components	
 of	
 the	
 graph	
 that	
 can	
 be	
 analyzed	

independently.	
 	

s  Consequently	

#	
 of	
 states	
 of	
 the	
 system	
 =	
 Π	
 #	
 of	
 states	
 of	
 each	
 subsystem	

s  	
 replaced	
 by	

#	
 of	
 states	
 of	
 the	
 system	
 =	
 Σ	
 #	
 of	
 states	
 of	
 each	
 subsystem	

26	

Conclusions	

s  With	
 decomposition,	
 	

s  even	
 only	
 identifying	
 two	
 or	
 three	
 such	
 components,	

s  results	
 in	
 improvements	
 in	
 performance	
 of	
 several	
 orders	

of	
 magnitude	
 for	
 a	
 single	
 model-­‐	
 checking	
 exercise	
 	

s  Applicable	
 particularly	
 to	
 loosely	
 coupled	
 systems	

s  Kripke	
 structures	
 in	
 description	
 languages	
 of	

common	
 tools	
 such	
 as	
 NuSMV	
 can	
 be	
 generated	
 and	

verified	
 much	
 more	
 efficiently.	
 	

27	

28	

