Module Isolation for Efficient
Model Checking
and its Application to FMEA in
Model-Driven Engineering

Vladimir Estivill-Castro and Rene” Hexel
Griffith University, Brisbane, Australia

Outline

Motivation
¢ Model-Driven Development (MDD)
¢ Finite State Machines

Logic-labeled Finite-State Machines

Formal Verification and Model Checking
Use for Failure Mode Effect Analysis (FMEA)
Examples and Results

Conclusions

Model-Driven Development

¢ Widely successful approach to developing software

¢ Ensures traceability, validation against requirements,
and platform independence

¢ Tools and techniques are resulting in faster and
simpler (easier to maintain) products and
applications than traditional language parser/
compiler or interpreter approaches

Finite-State Machines

¢+ Finite state machines (FSMs) are ubiquitous to describe
system behavior

¢ QP (Samek, 2008), Bot- Studio (Michel, 2004) StateWORKS
(Wagner et al., 2006) and MathWorks StateFlow. The UML

form of FSMs derives from OMT (Rumbaugh et al., 1991,
Chapter 5), and the MDD initiatives of Executable UML

(Mellor and Balcer, 2002).
¢ Large penetration in industrial settings

¢ Concurrent execution of FSMs and model checking faces the
challenge that

of states of the system = 1% of states of each subsystem

Formal verification and
model checking

Formal verification validates the system, but

¢ Systems are also examined using fault injection and
extensive Failure Mode Effects Analyses (FMEAS)

The model-checking exercise is repeated in a system
with an injected fault to determine the effect of such
fault

Complemented by simulation of other components
and their faults

¢ Increases the number of states in the system

Event-driven FSMs

Most common approach

¢ System s in a state

¢ waiting

¢ does not change what is i
¢+ doing/happening possession o

¢+ until event arrives possession

¢ Events change the state of the system

\

Logic-labeled FSMs

¢+ A second view of time (since Harel’s seminal paper)
¢ Machines are not waiting in the state for events
¢+ The machines drive, execute
¢ The transitions are expressions in a logic

¢ or queries to an expert system

lllustration

¢ The Micro-wave Oven

¢ (ubiquitous in the literature of model-checking and
model-driven development)

Requirements D es Crlptl on
A
- |R1 There is a single control button available for the use of the oven. If the oven is closed and you
. push the button, the oven will start cooking (that is, energize the power-tube) for one minute
-
| R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra

minute.

R3 Pushing the button when the door is open has no effect.

R 4 Whenever the oven is cooking or the door is open, the light in the oven will be on.

e —

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user
has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a
warning beep to indicate that the cooking has finished.

o

Complete model of the
microwave oven

INIT A

| OnEntry
| {int currentTime; currentTime=0;}

s

CHECK

OnExit {}

OnEntry {}

uttonPushed && !doorOpen

OnExit {}

{timeLeft=0<currentTime;}

1

IdoorOpen && timelLeft

DECREMENT_1_MINUTE

~N

ﬁ tftepPushed
/&/ﬁeout(soooooom

4 ADD_1_MINUTE

OnEntry {currentTime=currentTime-1;}

OnExit {

/

k- OnEntry {int motor; motor=0;}
OnExit {}
¢

a NOT_COOKING 7\ !doorOpen && timeleft [COOKING \

£ orOpen Il ! timeL(ﬂl/w

OnEntry {currentTime=1+currentTime;}

OnExit {timeLeft=1;}

L{}

OnEntry {motor=1;}
OnExit {}
¢

b)

>

OnEntry {int light; light=0;}

d)

/

OFF

OnEntry {int sound; sound=0;}

timeLeft

ARMED

OnExit {}

&

/

timeout(2000000)

/

OnEntry {sound=1;}

OnEntry {}
OnExit {}
¢

h;

Itimg

0
ﬁ

doorOpen Il timeLeft

Y

OnExit {}

é)

OnEntry {light=1;}

J\.ﬁqorOpen && !timel_ﬁﬂ/

OnExit {}

\ y

Model Checking and
Validation
¢ Properties

¢+ Property 1: Necessarily, the oven stops (after several steps, i.e.
a small, finite number of transitions in the Kripke structure)
after the door opens.”

Property-2: “It is necessary to pass through a state in which
the door is closed to reach a state in which the motor is
working and the machine has started.”

Property-3: “Necessarily, the oven stops(after several steps,
i.e. again, a small, finite number of transitions in the Kripke
structure) after the timer has expired.”

Property-4: “Cooking may go on for ever (e.g. if the user
repeatedly keeps pressing the add button while the timer is
still running).”

Formal description of the
Property in LTL

¢ Using NUSMV’s code

¢+ “the cooking must stop if the door is held open

SPEC

AG((E$$doorOpen=1 & M0$$Smotor=1) ->

AX((E$$doorOpen=1 -> MO$$motor=0) | AX(

(E$$doorOpen=1 -> MO$$motor=0) | AX(
(E$$doorOpen=1 -> MO$$motor=0) | AX(
(E$$doorOpen=1 -> M0$$Smotor=0) | AX(
(E$$doorOpen=1 -> M0$$Smotor=0) | AX(
(E$$doorOpen=1 -> M0$$Smotor=0) | AX(
(E$$doorOpen=1 -> M0$$Smotor=0) | AX(
M0$$motor=0)))))))))

Y

Failure Mode Analysis

¢ New components come into place

\~ 2 BULB_OFF)

" 1BULB.ON)

OnEntry {int On; On=0;}

OnExit {}

{

|

llight

OnEntry {On=1;}

OnExit {}

¢

w

Figure 3: A model of the light bulb hardware component.

¢+ Fault injection determines the effects

1. toremove behavior from the model (an omission
failure) and test all properties, and

2. to modify (a value failure) behavior and test all

properties.

Identification of
independent sub-modules

¢ Whiteboard infrastructure holds the shared variables
Sequential execution control the state explosion
FSMs have a READ phase before they execute a ringlet

An FSM’s WRITE of the variables is not in a race condition
with other FSMs

The REQUIRES set of an FSMs is the set of shared
variables it reads a value from

The PROVIDES set of an FSM is the set of shared variables
it modifies

We identify the (effect)

dependencies among FSMs
¢ A dependency graph

¢ Nodes are the behavior modules (FSMs)

¢ adirected edge from FSM M, to FSM M, if the

REQUIRES set of M, has a non-empty intersection with
the PROVIDES set of M..

a) b)

Figure 4. A dependency graph, and b) its cover into 3 com-
ponents.

14

Observations

¢+ Definition: If v, is a vertex of in-degree NOT 0, A, is
the set of ancestor of v, and includes v,

¢* Lemma 3.1. For any vertex u, € A, there s a directed
path from u, tov, in G; and therefore the WRITE set
of u, may influence the READ set of v, .

¢ Observation 3.2. If there is a directed path from a
node v.to a node v,, then v, and v, must be analyzed

jointly.

The cover

¢ A decomposition of the graph G = (V, E) of
dependencies into a cover C ={(4,...,C.} so that

1. every node is included; thatis U...C=V, (is a cover)
2. each component C € C of this cover has the property
that if u and v are vertices in C, then
a. thereisapathinCformutovor
b. apathinCfromyvto u,
3. each component is ancestor-maximal, that is, there is

no vertex v outside Cso that thereis a path fromv to
some vertex u € C.

Algorithm

¢ Depth First Search
¢+ Classification of edges

¢+ tree edges which lead to new vertices during the search and
form the topological-sort tree,

¢ forward edges which go from ancestors to proper
descendants but are no tree edges

¢ back edges which go from descendants to ancestors, cross
edges which go between vertices that are neither ancestors
not descendants of one another.

¢ Find maximal ancestors of v, by Depth First Search in
reverse direction

¢+ Directed forward Depth First Search from Maximal
ancestors

When do we find
components

there is a node v that has two or more children in the
topological-sort tree,

there is no back edge from any descendant of vin
the topological-sort to an ancestor of v

there is no forward edge from an ancestor of vto a
descendant of v.

Plus some other checks
¢ see paper

Example with the
microwave oven

\/

Microwave_Timer

Microwave_Bell Microwave_Engine Microwave_Light

Sound_Speaker Engine_Motion

Figure 5: The dependencies of the modules of the
Microwave_Oven.

The cover

Microwave_ Microwave_ Microwave_

Microwave_ Microwave_ Mlcr9wave_
», A 7]
DE Neine

Sound_Speaker Engine_Motion

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

20

Comparison

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave_Oven case study.

Component CPU Time Space

Combined graph 2,557.32s | 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

. 4.0
iV A‘.“-L‘l’ %4

Another example, the

mine pump

Table 3: Mine_Pump requirements.

Req.

Description

The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump 1is

R1 switched off. When the water raises above the high-water sensor
it shall switch on.
An human operator can switch the pump on and off provided the
R 2 water level is between the high-water sensor and the low-water
Sensor.
R 3 Another button accessed by a supervisor can switch the pump on
and off independently of the water level.
R 4 The pump will not turn on if the methane sensor detects a high
reading.
There are two other sensors, a carbon monoxide sensor and an air-
R S5 flow sensor, and if carbon monoxide is high or air-flow is low, and

alarm rings to indicate evacuation of the shaft.

Logic-labeled FSMs for the
mine pump

®

é INACTIVE)
é INDICATE_ON)

OnEntry {extern supervisorButtonOn;
extern supervisorButtonOff;
extern supervisorButtonlnactive; - : — —

indicateOn=0; indicateOff=0; } IsupervisorButtonOn && !supervisorButtonOff OnExit { indicateOn=0; }

{

OnExit {}
{

supervisorButtonOn && !supervisorButtonOff OnEntry { indicateOn=1; }

supervisorButtonOff && lstpervisorButtonOn
supervisorButtonOth&& !supervisorButtonOn
1 (" INDICATE_OFF ,
OnEntry { indicateOff=1; }

OnExit { indicateOff=0; } ; $
supervisorButtonOn && fsupervisorButtonOff
0 J

(indicateOn I
llowWaterSensorOn &&ThighWaterSensorSq lloperatorButtonOn)))
&& lindicateOff ST g
NOT_RUNNING && !methaneSensorHigh RUNNING
OnEntry { motor=0) OnEntry {motor=1:} NOT_RINGING) co2sensorHigh Il airFlowLow RINGING
OnExit {} OnExit {} OnEntry {bell=0;}
¢ ¢ - , ! -
lindicateOn && | OnExit {} ICO2SensorHigh && lairFlowLow | OnExit {}
Mn Il (IhighWaterSensorOn &&m
Il indicate Off \{} / \{} /
Il methaneSensorHigh c)

IsupervisorButtonOnN&& !supervisorButtonOff

OnEntry {bell=1;}

The graph for the mine
pump

co, Air Flow Supervisor Operator Methane
Sensor Sensor Button Button Sensor

High Low
Water- Water-
Level Level
Sensor Sensor

\/ \ /

Alarm_Control | Supervisor_Control Pump_Control

Sound_Speaker Pump_Engine

Figure 8: Mine_Pump Dependencies.

Comparison

Table 4: Resource comparison for Kripke structure of the
Mine_Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space

Combined graph 22,356.51s | 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

- e ——— -

[D Y S P —— S S —

Summary

¢ Formal verification by model checking and the
construction of FMEA tables had been reported to

¢+ take CPU times of the order of days or weeks for some well-
discussed case studies (Grunske et al., 2011).

¢ We have shown here that, for logic-labeled FSMs,

¢+ we can efficiently split the corresponding dependency graph
and

¢+ obtain components of the graph that can be analyzed
independently.

¢+ Consequently
of states of the system = # of states of each subsystem

¢+ replaced by

of states of the system = 2 # of states of each subsystem

Conclusions

¢ With decomposition,
¢+ even only identifying two or three such components,

¢+ results in improvements in performance of several orders
of magnitude for a single model- checking exercise

¢ Applicable particularly to loosely coupled systems

¢ Kripke structures in description languages of
common tools such as NuSMV can be generated and
verified much more efficiently.

Thanks

Questions

