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Model-‐Driven	  Development	  

s  Widely	  successful	  approach	  to	  developing	  software	  

s  Ensures	  traceability,	  validation	  against	  requirements,	  
and	  platform	  independence	  	  

s  	  Tools	  and	  techniques	  are	  resulting	  in	  faster	  and	  
simpler	  (easier	  to	  maintain)	  products	  and	  
applications	  than	  traditional	  language	  parser/
compiler	  or	  interpreter	  approaches	  	  
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s  Finite	  state	  machines	  (FSMs)	  are	  ubiquitous	  to	  describe	  
system	  behavior	  
s  QP	  (Samek,	  2008),	  Bot-‐	  Studio	  (Michel,	  2004)	  StateWORKS	  

(Wagner	  et	  al.,	  2006)	  and	  MathWorks	  StateFlow.	  The	  UML	  
form	  of	  FSMs	  derives	  from	  OMT	  (Rumbaugh	  et	  al.,	  1991,	  
Chapter	  5),	  and	  the	  MDD	  initiatives	  of	  Executable	  UML	  
(Mellor	  and	  Balcer,	  2002).	  

s  Large	  penetration	  in	  industrial	  settings	  

s  Concurrent	  execution	  of	  FSMs	  and	  model	  checking	  faces	  the	  
challenge	  that	  

	  #	  of	  states	  of	  the	  system	  =	  Π	  #	  of	  states	  of	  each	  subsystem	  

Finite-‐State	  Machines	  
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Formal	  verification	  and	  
model	  checking	  

s  Formal	  verification	  validates	  the	  system,	  but	  
s  Systems	  are	  also	  examined	  using	  fault	  injection	  and	  

extensive	  Failure	  Mode	  Effects	  Analyses	  (FMEAs)	  	  

s  The	  model-‐checking	  exercise	  is	  repeated	  in	  a	  system	  
with	  an	  injected	  fault	  to	  determine	  the	  effect	  of	  such	  
fault	  

s  Complemented	  by	  simulation	  of	  other	  components	  
and	  their	  faults	  
s  Increases	  the	  number	  of	  states	  in	  the	  system	  
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Event-‐driven	  FSMs	  
Most	  common	  approach	  
s  System	  is	  in	  a	  state	  

s  waiting	  
s  does	  not	  change	  what	  is	  

s  	  doing/happening	  	  
s  until	  event	  arrives	  

s  Events	  change	  the	  state	  of	  the	  system	  
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Logic-‐labeled	  FSMs	  
s  A	  second	  view	  of	  time	  (since	  Harel’s	  seminal	  paper)	  
s  Machines	  are	  not	  waiting	  in	  the	  state	  for	  events	  
s  The	  machines	  drive,	  execute	  
s  The	  transitions	  are	  expressions	  in	  a	  logic	  

s  or	  queries	  to	  an	  expert	  system	  
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Illustration	  
s  The	  Micro-‐wave	  Oven	  
s  (ubiquitous	  in	  the	  literature	  of	  model-‐checking	  and	  

model-‐driven	  development)	  
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Requirements Description 

R1 There  is a single control button available for the use of the oven. If the oven is closed and you 
push the button, the oven will start cooking (that is, energize the power-tube) for one minute 

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra 
minute. 

R3 Pushing the button when the door is open has no effect. 

R4 Whenever the oven is cooking or the door is open, the light in the oven will be on. 

R5 Opening the door stops the cooking. 

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user 
has placed food in the oven. 

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a 
warning beep to indicate that the cooking has finished. 

and	  does	  not	  clear	  the	  timer	  and	  stops	  the	  timer	  



Complete	  model	  of	  the	  
microwave	  oven	  	  
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a)

INIT
OnEntry
{int currentTime; currentTime=0;}
OnExit {}
{}

CHECK
OnEntry {}
OnExit {}
{timeLeft=0<currentTime;}

1

1

DECREMENT_1_MINUTE
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen

ADD_1_MINUTE
OnEntry {currentTime=1+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed
!doorOpen && timeLeft && timeout(60000000)

b)

OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

RINGING

OnExit {}
OnEntry {sound=1;}

{}

!timeLeft

c)

NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft d)

DARK
OnEntry {int light; light=0;}
OnExit {}
{}

ILLUMINATED
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

Figure 1: Complete model of one-minute microwave. a) A 4-state FSM for the timer. b) A 3-state machine for controlling
the bell. c) A 2-state machine for controlling the cooking engine. d) A 2-state machine for the light.

that we can demonstrate can be verified separately.
Thus, without loss of generality, model-checking of
the system can be partitioned. Similarly, the same
model-checking process that performs FMEA can
also be completed on the independent partitions while
still being able to provide the complete FMEA table
for the system. That is, our approach enables com-
plete validation of models as well as comprehensive
failure analysis in scenarios that would otherwise be
too complex or costly to formally verify.

There is a further aspect where our approach of-
fers a significant improvement on previous work.
Estivill-Castro, Hexel and Rosenblueth (Estivill-
Castro et al., 2012c) reduced the challenge of model-
checking concurrent executable models by prescrib-
ing a deterministic sequential schedule on a single
CPU. That approach reduced all possible permuta-
tions of states of computation to only those that
where derived from the schedule. Similarly, the
RRMDs (Satpathy et al., 2013) approach removes all
parallelism, and converts the program into a totally
deterministic behavior. Deterministic scheduling fa-
cilitates model-checking but prevents truly parallel
execution of the system. If such software is to ex-
ecute on hardware that supports more than one CPU
(or a multi-core CPU, which is becoming increasingly
common now, even on mobile or embedded systems),
then such a sequential approach is not able to not take
advantage of the true parallelism available on these
systems. With our approach here, we can identify
groups of modules that can be scheduled in parallel
and still have completely verified models under con-
sequential parallel schedules.

We will use two case studies to support the ar-
gument. Both examples are a widely used exam-
ple in the literature of model-checking, model-driven
development and safety: the one-minute microwave
and the mine pump. The one-minute microwave has
analogies for safety with well-publicised cases such
as the failure of the Therac-25 X-Ray machine.

Table 1: Microwave Oven requirements.
Req. Description

R 1
There is a single control button available for the use of the oven.
If the oven is closed and you push the button, the oven will start
cooking (that is, energise the power-tube) for one minute.

R 2 If the button is pushed while the oven is cooking, it will cause the
oven to cook for an extra minute.

R 3 Pushing the button when the door is open has no effect.

R 4 Whenever the oven is cooking or the door is open, the light in the
oven will be on.

R 5 Opening the door stops the cooking.

R 6
Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R 7
If the oven times out, the light and the power-tube are turned off
and then a beeper emits a warning beep to indicate that the cooking
has finished.

2 TACKLING COMPLEXITY

The one minute microwave is a good case study for
modelling requirements. Scholars discussing this ex-
ample typically present a series of requirements in
natural language like those in Table 1. Techniques
such as behavior-trees, Petri Nets, plain finite-state
machines (Wagner et al., 2006) and logic-labeled fi-
nite state machines (Estivill-Castro et al., 2012b) have
been used to model this case study.

Fig. 1 shows the model that uses logic-labeled
finite state machines (Estivill-Castro et al., 2012b)
for the microwave controller (Estivill-Castro et al.,
2012a). It consists of four finite state machines that
are executed in a round robin fashion. Through such
sequential execution, all possible state combinations
that can occur in the system can be derived (Estivill-
Castro et al., 2012c).

The sequential program corresponds to a
Kripke structure by standard transformation tech-
niques (Clarke et al., 2001, Chap. 2), and thus,
standard model-checking tools such as NuSMV can
be applied to establish that this software controller
fulfils safety properties. For the microwave, safety
properties include the following
Property-1 “Necessarily, the oven stops (after several



Model	  Checking	  and	  
Validation	  

s  Properties	  
s  Property	  1:	  Necessarily,	  the	  oven	  stops	  (after	  several	  steps,	  i.e.	  

a	  small,	  finite	  number	  of	  transitions	  in	  the	  Kripke	  structure)	  
after	  the	  door	  opens.”	  	  

s  Property-‐2:	  “It	  is	  necessary	  to	  pass	  through	  a	  state	  in	  which	  
the	  door	  is	  closed	  to	  reach	  a	  state	  in	  which	  the	  motor	  is	  
working	  and	  the	  machine	  has	  started.”	  	  

s  Property-‐3:	  “Necessarily,	  the	  oven	  stops(after	  several	  steps,	  
i.e.	  again,	  a	  small,	  finite	  number	  of	  transitions	  in	  the	  Kripke	  
structure)	  after	  the	  timer	  has	  expired.”	  	  

s  Property-‐4:	  “Cooking	  may	  go	  on	  for	  ever	  (e.g.	  if	  the	  user	  
repeatedly	  keeps	  pressing	  the	  add	  button	  while	  the	  timer	  is	  
still	  running).”	  	  
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Formal	  description	  of	  the	  
Property	  in	  LTL	  

s  Using	  NUSMV’s	  code	  
s  “the	  cooking	  must	  stop	  if	  the	  door	  is	  held	  open”	  
SPEC 
AG( (E$$doorOpen=1 & M0$$motor=1) ->  
         AX(  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX(   
                 (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  (E$$doorOpen=1 -> M0$$motor=0) | AX( 
                  M0$$motor=0))))))))) 
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Failure	  Mode	  Analysis	  

s  New	  components	  come	  into	  place	  

s  Fault	  injection	  determines	  the	  effects	  	  
1.  to	  remove	  behavior	  from	  the	  model	  (an	  omission	  

failure)	  and	  test	  all	  properties,	  and	  	  
2.  	  to	  modify	  (a	  value	  failure)	  behavior	  and	  test	  all	  

properties.	  	  
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2 BULB_OFF
OnEntry {int On; On=0;}
OnExit {}
{}

1 BULB_ON
OnEntry {On=1;}
OnExit {}
{}

l ight

!l ight

Figure 3: A model of the light bulb hardware component.

bulb being poorly connected, or busted. These ad-
ditional components enable verification of some very
important initial and shut-down conditions of the sys-
tem. One can observe the behaviour of the software, if
it starts running with error states of other components.
For instance, in the microwave example, it could be
starting with a faulty door sensor always reporting a
doorOpen condition.

The point we want to make here is that these ad-
ditional models that represent the hardware as well
as the software, while very effective for FMEA table
completion, result in a much larger Kripke structure
for the model-checker. Simply put, now we have a
larger set of components that we are formally veri-
fying. More importantly, for each component that is
added, the total number of possible states (of the hard-
ware and software in simulation) gets multiplied by
the number of states of the additional component.

A very important observation is that, typically,
such hardware components only depend on a very
small software module – let’s call it the driver soft-
ware (in the above example, that role is played by the
state machine in Fig. 1b) – and they do not depend
on the many other components or software modules.
Thus, one shall identify independent sub-models, for
the purposes of model checking, whose state-space
would be much smaller. The end result is that the
model-checking that is repeated for every entry of the
FMEA table would be, in fact, much faster, having
an overall dramatic improvement in verification times
and the completion of the FMEA table.

3 INDEPENDENT SUB-MODEL
IDENTIFICATION

We propose a method to identify dependencies be-
tween components. We use the semantics and sequen-
tial scheduling (Estivill-Castro et al., 2012b; Estivill-
Castro et al., 2012a) proposed for logic-based finite-
state machines (FSMs). These FSMs consist of a
set S of states and a transition table T : S ⇥ E ! S
. There is an initial state s0 2 S, and for each state,
the transitions leading out of the state are ordered in
a sequence. Transitions are labeled by an expression
e 2 E, and these expressions are evaluated in deter-

ministic order (and time) by an expert system (the ex-
amples in the literature use Decisive Plausible Logic
(DPL) (Estivill-Castro et al., 2012b; Estivill-Castro
et al., 2012a), but the expressions can also be Boolean
expressions of an imperative programming language
such as C, C++, or Java (or any decidable logic, that
provides an answer in predictable time). The point is
that execution of an vector of these machines (such as
the ones in Fig. 1 in the previous section) is sequenced
deterministically by a pre-defined schedule. Each ma-
chine in the vector receives a pre-defined number of
ringlets it executes before execution passes to the next
machine in the vector. The execution token passes
back to the first machine after the last machine com-
pletes its allocated ringlets. A ringlet consist of eval-
uating the OnEntry section of the current state (if it
is the first time control arrives to this state from an-
other state in this machine), followed by evaluation of
the expressions in the list of transitions until an ex-
pression evaluates to true. In this case, the OnExit
section is evaluated and the ringlet concludes. If the
list of transitions is exhausted without any expres-
sion becoming true; then the Internal section of the
state completes and the ringlets also conclude. Thus a
ringlet is the complete assessment of the current state.

The shared variables between the different mod-
ules (FSMs) are called external variables and are man-
aged on a repository architecture named the white-
board (Hayes-Roth, 1988). When the execution token
arrives at a machine, it makes a local copy of any ex-
ternal variables it will use in the current state. We re-
fer to this as the READ footprint on the whiteboard.
Before the execution token of an FSMs is handed
back, the machine copies to the whiteboard any ex-
ternal variables it has modified locally. We refer to
this as the WRITE footprint of the state. This ensures
there is never a race condition between the FSMs that
are running concurrently under the predefined sched-
ule (and thus, there is no need for further mechanisms
to protect shared variables or synchronise FSMs).

For a FSM, the union of all the READ footprints
of its states is called the REQUIRES set of the FSM.
Similarly, the union of all the WRITE footprints of
its states is called the PROVIDES set. Note that
it has been shown that the REQUIRES set and the
PROVIDES set of an FSM can be computed from the
static analysis of the FSM description (Estivill-Castro
and Hexel, 2011).

We can compute a dependency (impact) graph be-
tween the FSMs in a vector, given the REQUIRES
set and the PROVIDES set of the FSMs in that vec-
tor. That is, we can find the dependency graph of the
modules that constitute the software. There, nodes
of the graph are the modules (the FSMs), while there



Identification	  of	  
independent	  sub-‐modules	  

s  Whiteboard	  infrastructure	  holds	  the	  shared	  variables	  

s  Sequential	  execution	  control	  the	  state	  explosion	  

s  FSMs	  have	  a	  READ	  phase	  before	  they	  execute	  a	  ringlet	  

s  An	  FSM’s	  WRITE	  of	  the	  variables	  is	  not	  in	  a	  race	  condition	  
with	  other	  FSMs	  

s  The	  REQUIRES	  set	  of	  an	  FSMs	  is	  the	  set	  of	  shared	  
variables	  it	  reads	  a	  value	  from	  

s  The	  PROVIDES	  set	  of	  an	  FSM	  is	  the	  set	  of	  shared	  variables	  
it	  modifies	  

13	  



We	  identify	  the	  (effect)	  
dependencies	  among	  FSMs	  

s  A	  dependency	  graph	  

s  Nodes	  are	  the	  behavior	  modules	  (FSMs)	  

s  a	  directed	  edge	  from	  FSM	  M1	  to	  FSM	  M2	  if	  the	  
REQUIRES	  set	  of	  M2	  has	  a	  non-‐empty	  intersection	  with	  
the	  PROVIDES	  set	  of	  M1.	  	  
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is a directed edge from FSM M1 to FSM M2 if the
REQUIRES set of M2 has a not empty intersection
with the PROVIDES set of M1.

It is clear that in this graph, if we find sev-
eral disjoint, connected components, then these are
completely independent, and any model-checking of
the entire system is equivalent to performing model-
checking of each connected component separately.
Simply put, none of the external variables of the
connected components are shared. That is, there is
no communication whatsoever between FSMs in one
connected component and another. They can actually
be scheduled in parallel and not sequentially, and each
would have no impact on the other. This is an extreme
case that would rarely appear in practice as it indicates
that a system is made of completely independent sys-
tems without communication between them. How-
ever, this is an important precursor to the principle we
shall discuss next, as such partitioning illustrates that
the model-checker no longer has to explore a Kripke
state space consisting of the product of all the state
spaces, but indeed we can get away with exploring
essentially separate spaces, only adding their number
of states (rather than multiplying them).

This directed graph can now be analysed by tra-
ditional digraph algorithms. Consider the following
procedure. Let v1 be a node with a non-zero in-
degree. We can find an ancestor (as v1 has an in-
degree larger or equal to 1). If the ancestor has an
in-degree greater than 0, we find an ancestor of the
ancestor. In fact, we conduct a depth-first search con-
sidering the edges in reverse orientation from v1. We
call this graph Av1 (and although we refer to it as the
ancestors of v1, we consider v1 2 Av1 ).
Lemma 3.1. For any vertex u1 2 Av1 , there is a di-
rected path from u1 to v1 in G; and therefore the
WRITE set of u1 may influence the READ set of v1.

Proof. This follows by induction and transitivity on
the length of the path from u1 to v1.

We refer to the construction of Av1 for a vertex v1
as the ancestor exploration step with focus v1.

As a consequence of Lemma 3.1 we have the fol-
lowing observation.
Observation 3.2. If there is a directed path from a
node v1 to a node v2, then v1 and v2 must be analysed
jointly.

Conversely, if there are two nodes v and u, and
there is no directed path from v to u and there is no
directed path in the other direction either (from u to
v), then then nodes u and v can be analysed separately.

Thus, what we are aiming for is a decomposition
of the graph G = (V,E) of dependencies into a cover
Ĉ = {C1, . . . ,Ct} so that
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Figure 4: A dependency graph, and b) its cover into 3 com-
ponents.

1. every node is included; that is
S

C2Ĉ C =V ,

2. each component C 2 Ĉ of this cover has the prop-
erty that if u and v are vertices in C, then there is
a path in C form u to v or a path in C from v to u,

3. each component is ancestor-maximal, that is,
there is no vertex v 62C so that there is a path from
v to some vertex u 2C.

Moreover, we aim for a cover with minimum number
of components. For illustration, consider the graph in
Fig. 4a). This graph’s cover is shown by the 3 compo-
nents in Fig. 4b). Note that there is no further ancestor
to any vertex that belongs to a component outside the
component. Also, vertex 1 and vertex 2 are in dif-
ferent components, as in the graph itself, there is no
directed path in either direction.

To compute this cover we recall the classical de-
scription (Aho et al., 1974) of depth-first search (both
for a directed graph and an undirected graph). We
reduce the problem to connected components by ap-
plying depth-first search to the undirected version of
the graph. Thus, in what follows, we assume that the
undirected version of the graph is connected. Then,
we can take any vertex v1 with a non-zero in-degree
and find its ancestors by using directed depth first
search (but following the directed edges in reverse
direction). Moreover, the depth directed depth first
search produces (Aho et al., 1974, page 188)
tree edges which lead to new vertices during the

search and form the topological-sort tree,
forward edges which go from ancestors to proper de-

scendants but are no tree edges
back edges which go from descendants to ancestors,
cross edges which go between vertices that are nei-

ther ancestors not descendants of one another.
Thus, the depth-first search in reverse direction from
v1 has leave nodes of the topological-sort tree. Let u
be a leave node. If such a leave u does not have a back
edge, then u is a maximal ancestor. The starting set of
ancestors consist of u alone. If u has a back edge,
then u is in a cycle and we take all the vertices in all
the cycles involving u as the starting set of ancestors.



Observations	  

s  Definition:	  If	  v1	  is	  a	  vertex	  of	  in-‐degree	  NOT	  0,	  Av1	  is	  
the	  set	  of	  ancestor	  of	  v1	  and	  includes	  v1	  

s  Lemma	  3.1.	  For	  any	  vertex	  u1	  ∈	  Av1	  ,	  there	  is	  a	  directed	  
path	  from	  u1	  	  to	  v1	  	  in	  G;	  and	  therefore	  the	  WRITE	  set	  
of	  u1	  	  may	  influence	  the	  READ	  set	  of	  v1	  .	  	  

s  Observation	  3.2.	  If	  there	  is	  a	  directed	  path	  from	  a	  
node	  v1to	  a	  node	  v2,	  then	  v1	  and	  v2	  must	  be	  analyzed	  
jointly.	  	  
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The	  cover	  

s  A	  decomposition	  of	  the	  graph	  G	  =	  (V,	  E	  )	  of	  
dependencies	  into	  a	  cover	  C	  ={C1,...,Ct}	  so	  that	  	  

1.  every	  node	  is	  included;	  that	  is	  	  UC∈C	  C	  =	  V	  ,	  (is	  a	  cover)	  

2.  each	  component	  C	  ∈	  C	  of	  this	  cover	  has	  the	  property	  
that	  if	  u	  and	  v	  are	  vertices	  in	  C,	  then	  

a.  	  there	  is	  a	  path	  in	  C	  form	  u	  to	  v	  or	  	  
b.  a	  path	  in	  C	  from	  v	  to	  u,	  	  

3.  each	  component	  is	  ancestor-‐maximal,	  that	  is,	  there	  is	  
no	  vertex	  v	  outside	  	  C	  so	  that	  there	  is	  a	  path	  from	  v	  to	  
some	  vertex	  u	  ∈	  C.	  	  
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Algorithm	  
s  Depth	  First	  Search	  
s  Classification	  of	  edges	  

s  tree	  edges	  which	  lead	  to	  new	  vertices	  during	  the	  search	  and	  
form	  the	  topological-‐sort	  tree,	  	  

s  forward	  edges	  which	  go	  from	  ancestors	  to	  proper	  
descendants	  but	  are	  no	  tree	  edges	  	  

s  back	  edges	  which	  go	  from	  descendants	  to	  ancestors,	  cross	  
edges	  which	  go	  between	  vertices	  that	  are	  neither	  ancestors	  
not	  descendants	  of	  one	  another.	  	  

s  Find	  maximal	  ancestors	  of	  v1	  by	  Depth	  First	  Search	  in	  
reverse	  direction	  

s  Directed	  forward	  Depth	  First	  Search	  from	  Maximal	  
ancestors	  
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When	  do	  we	  find	  
components	  

s  there	  is	  a	  node	  v	  that	  has	  two	  or	  more	  children	  in	  the	  
topological-‐sort	  tree,	  	  

s  there	  is	  no	  back	  edge	  from	  any	  descendant	  of	  v	  in	  
the	  topological-‐sort	  to	  an	  ancestor	  of	  v	  	  

s  there	  is	  no	  forward	  edge	  from	  an	  ancestor	  of	  v	  to	  a	  
descendant	  of	  v.	  	  

s  Plus	  some	  other	  checks	  
s  see	  paper	  

18	  



Example	  with	  the	  
microwave	  oven	  

19	  

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.
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Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.
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Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
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Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split
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Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).
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a)

INACTIVE
OnEntry {extern supervisorButtonOn;
       extern supervisorButtonOff;
       extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).



Summary	  
s  Formal	  verification	  by	  model	  checking	  and	  the	  

construction	  of	  FMEA	  tables	  had	  been	  reported	  to	  
s  	  take	  CPU	  times	  of	  the	  order	  of	  days	  or	  weeks	  for	  some	  well-‐

discussed	  case	  studies	  (Grunske	  et	  al.,	  2011).	  	  

s  We	  have	  shown	  here	  that,	  for	  logic-‐labeled	  FSMs,	  
s  	  we	  can	  efficiently	  split	  the	  corresponding	  dependency	  graph	  

and	  	  
s  obtain	  components	  of	  the	  graph	  that	  can	  be	  analyzed	  

independently.	  	  

s  Consequently	  
#	  of	  states	  of	  the	  system	  =	  Π	  #	  of	  states	  of	  each	  subsystem	  
s  	  replaced	  by	  

#	  of	  states	  of	  the	  system	  =	  Σ	  #	  of	  states	  of	  each	  subsystem	  
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Conclusions	  

s  With	  decomposition,	  	  
s  even	  only	  identifying	  two	  or	  three	  such	  components,	  

s  results	  in	  improvements	  in	  performance	  of	  several	  orders	  
of	  magnitude	  for	  a	  single	  model-‐	  checking	  exercise	  	  

s  Applicable	  particularly	  to	  loosely	  coupled	  systems	  

s  Kripke	  structures	  in	  description	  languages	  of	  
common	  tools	  such	  as	  NuSMV	  can	  be	  generated	  and	  
verified	  much	  more	  efficiently.	  	  
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