

Outline	

s  Motivation	
s  Model-‐Driven	 Development	 (MDD)	
s  Finite	 State	 Machines	

s  Logic-‐labeled	 Finite-‐State	 Machines	

s  Formal	 Verification	 and	 Model	 Checking	

s  Use	 for	 Failure	 Mode	 Effect	 Analysis	 (FMEA)	

s  Examples	 and	 Results	

s  Conclusions	

2	

Model-‐Driven	 Development	

s  Widely	 successful	 approach	 to	 developing	 software	

s  Ensures	 traceability,	 validation	 against	 requirements,	
and	 platform	 independence	 	

s  	 Tools	 and	 techniques	 are	 resulting	 in	 faster	 and	
simpler	 (easier	 to	 maintain)	 products	 and	
applications	 than	 traditional	 language	 parser/
compiler	 or	 interpreter	 approaches	 	

3	

s  Finite	 state	 machines	 (FSMs)	 are	 ubiquitous	 to	 describe	
system	 behavior	
s  QP	 (Samek,	 2008),	 Bot-‐	 Studio	 (Michel,	 2004)	 StateWORKS	

(Wagner	 et	 al.,	 2006)	 and	 MathWorks	 StateFlow.	 The	 UML	
form	 of	 FSMs	 derives	 from	 OMT	 (Rumbaugh	 et	 al.,	 1991,	
Chapter	 5),	 and	 the	 MDD	 initiatives	 of	 Executable	 UML	
(Mellor	 and	 Balcer,	 2002).	

s  Large	 penetration	 in	 industrial	 settings	

s  Concurrent	 execution	 of	 FSMs	 and	 model	 checking	 faces	 the	
challenge	 that	

	 #	 of	 states	 of	 the	 system	 =	 Π	 #	 of	 states	 of	 each	 subsystem	

Finite-‐State	 Machines	

4	

Formal	 verification	 and	
model	 checking	

s  Formal	 verification	 validates	 the	 system,	 but	
s  Systems	 are	 also	 examined	 using	 fault	 injection	 and	

extensive	 Failure	 Mode	 Effects	 Analyses	 (FMEAs)	 	

s  The	 model-‐checking	 exercise	 is	 repeated	 in	 a	 system	
with	 an	 injected	 fault	 to	 determine	 the	 effect	 of	 such	
fault	

s  Complemented	 by	 simulation	 of	 other	 components	
and	 their	 faults	
s  Increases	 the	 number	 of	 states	 in	 the	 system	

5	

Event-‐driven	 FSMs	
Most	 common	 approach	
s  System	 is	 in	 a	 state	

s  waiting	
s  does	 not	 change	 what	 is	

s  	 doing/happening	 	
s  until	 event	 arrives	

s  Events	 change	 the	 state	 of	 the	 system	

6	

Attack	

Defend	

gain	
possession	 lose	

possession	

Logic-‐labeled	 FSMs	
s  A	 second	 view	 of	 time	 (since	 Harel’s	 seminal	 paper)	
s  Machines	 are	 not	 waiting	 in	 the	 state	 for	 events	
s  The	 machines	 drive,	 execute	
s  The	 transitions	 are	 expressions	 in	 a	 logic	

s  or	 queries	 to	 an	 expert	 system	

7	

attack	 for	 a	
bit	

is	 the	 g
ame	 over?

	

I	 am	 injured?	

did	 the	 team	 lose	 possession?	

Illustration	
s  The	 Micro-‐wave	 Oven	
s  (ubiquitous	 in	 the	 literature	 of	 model-‐checking	 and	

model-‐driven	 development)	

8	

Requirements Description

R1 There is a single control button available for the use of the oven. If the oven is closed and you
push the button, the oven will start cooking (that is, energize the power-tube) for one minute

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra
minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the oven will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user
has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a
warning beep to indicate that the cooking has finished.

and	 does	 not	 clear	 the	 timer	 and	 stops	 the	 timer	

Complete	 model	 of	 the	
microwave	 oven	 	

9	

a)

INIT
OnEntry
{int currentTime; currentTime=0;}
OnExit {}
{}

CHECK
OnEntry {}
OnExit {}
{timeLeft=0<currentTime;}

1

1

DECREMENT_1_MINUTE
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen

ADD_1_MINUTE
OnEntry {currentTime=1+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed
!doorOpen && timeLeft && timeout(60000000)

b)

OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

RINGING

OnExit {}
OnEntry {sound=1;}

{}

!timeLeft

c)

NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft d)

DARK
OnEntry {int light; light=0;}
OnExit {}
{}

ILLUMINATED
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

Figure 1: Complete model of one-minute microwave. a) A 4-state FSM for the timer. b) A 3-state machine for controlling
the bell. c) A 2-state machine for controlling the cooking engine. d) A 2-state machine for the light.

that we can demonstrate can be verified separately.
Thus, without loss of generality, model-checking of
the system can be partitioned. Similarly, the same
model-checking process that performs FMEA can
also be completed on the independent partitions while
still being able to provide the complete FMEA table
for the system. That is, our approach enables com-
plete validation of models as well as comprehensive
failure analysis in scenarios that would otherwise be
too complex or costly to formally verify.

There is a further aspect where our approach of-
fers a significant improvement on previous work.
Estivill-Castro, Hexel and Rosenblueth (Estivill-
Castro et al., 2012c) reduced the challenge of model-
checking concurrent executable models by prescrib-
ing a deterministic sequential schedule on a single
CPU. That approach reduced all possible permuta-
tions of states of computation to only those that
where derived from the schedule. Similarly, the
RRMDs (Satpathy et al., 2013) approach removes all
parallelism, and converts the program into a totally
deterministic behavior. Deterministic scheduling fa-
cilitates model-checking but prevents truly parallel
execution of the system. If such software is to ex-
ecute on hardware that supports more than one CPU
(or a multi-core CPU, which is becoming increasingly
common now, even on mobile or embedded systems),
then such a sequential approach is not able to not take
advantage of the true parallelism available on these
systems. With our approach here, we can identify
groups of modules that can be scheduled in parallel
and still have completely verified models under con-
sequential parallel schedules.

We will use two case studies to support the ar-
gument. Both examples are a widely used exam-
ple in the literature of model-checking, model-driven
development and safety: the one-minute microwave
and the mine pump. The one-minute microwave has
analogies for safety with well-publicised cases such
as the failure of the Therac-25 X-Ray machine.

Table 1: Microwave Oven requirements.
Req. Description

R 1
There is a single control button available for the use of the oven.
If the oven is closed and you push the button, the oven will start
cooking (that is, energise the power-tube) for one minute.

R 2 If the button is pushed while the oven is cooking, it will cause the
oven to cook for an extra minute.

R 3 Pushing the button when the door is open has no effect.

R 4 Whenever the oven is cooking or the door is open, the light in the
oven will be on.

R 5 Opening the door stops the cooking.

R 6
Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.

R 7
If the oven times out, the light and the power-tube are turned off
and then a beeper emits a warning beep to indicate that the cooking
has finished.

2 TACKLING COMPLEXITY

The one minute microwave is a good case study for
modelling requirements. Scholars discussing this ex-
ample typically present a series of requirements in
natural language like those in Table 1. Techniques
such as behavior-trees, Petri Nets, plain finite-state
machines (Wagner et al., 2006) and logic-labeled fi-
nite state machines (Estivill-Castro et al., 2012b) have
been used to model this case study.

Fig. 1 shows the model that uses logic-labeled
finite state machines (Estivill-Castro et al., 2012b)
for the microwave controller (Estivill-Castro et al.,
2012a). It consists of four finite state machines that
are executed in a round robin fashion. Through such
sequential execution, all possible state combinations
that can occur in the system can be derived (Estivill-
Castro et al., 2012c).

The sequential program corresponds to a
Kripke structure by standard transformation tech-
niques (Clarke et al., 2001, Chap. 2), and thus,
standard model-checking tools such as NuSMV can
be applied to establish that this software controller
fulfils safety properties. For the microwave, safety
properties include the following
Property-1 “Necessarily, the oven stops (after several

Model	 Checking	 and	
Validation	

s  Properties	
s  Property	 1:	 Necessarily,	 the	 oven	 stops	 (after	 several	 steps,	 i.e.	

a	 small,	 finite	 number	 of	 transitions	 in	 the	 Kripke	 structure)	
after	 the	 door	 opens.”	 	

s  Property-‐2:	 “It	 is	 necessary	 to	 pass	 through	 a	 state	 in	 which	
the	 door	 is	 closed	 to	 reach	 a	 state	 in	 which	 the	 motor	 is	
working	 and	 the	 machine	 has	 started.”	 	

s  Property-‐3:	 “Necessarily,	 the	 oven	 stops(after	 several	 steps,	
i.e.	 again,	 a	 small,	 finite	 number	 of	 transitions	 in	 the	 Kripke	
structure)	 after	 the	 timer	 has	 expired.”	 	

s  Property-‐4:	 “Cooking	 may	 go	 on	 for	 ever	 (e.g.	 if	 the	 user	
repeatedly	 keeps	 pressing	 the	 add	 button	 while	 the	 timer	 is	
still	 running).”	 	

10	

Formal	 description	 of	 the	
Property	 in	 LTL	

s  Using	 NUSMV’s	 code	
s  “the	 cooking	 must	 stop	 if	 the	 door	 is	 held	 open”	
SPEC
AG((E$$doorOpen=1 & M0$$motor=1) ->
 AX((E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 M0$$motor=0)))))))))
	

11	

Failure	 Mode	 Analysis	

s  New	 components	 come	 into	 place	

s  Fault	 injection	 determines	 the	 effects	 	
1.  to	 remove	 behavior	 from	 the	 model	 (an	 omission	

failure)	 and	 test	 all	 properties,	 and	 	
2.  	 to	 modify	 (a	 value	 failure)	 behavior	 and	 test	 all	

properties.	 	

12	

2 BULB_OFF
OnEntry {int On; On=0;}
OnExit {}
{}

1 BULB_ON
OnEntry {On=1;}
OnExit {}
{}

l ight

!l ight

Figure 3: A model of the light bulb hardware component.

bulb being poorly connected, or busted. These ad-
ditional components enable verification of some very
important initial and shut-down conditions of the sys-
tem. One can observe the behaviour of the software, if
it starts running with error states of other components.
For instance, in the microwave example, it could be
starting with a faulty door sensor always reporting a
doorOpen condition.

The point we want to make here is that these ad-
ditional models that represent the hardware as well
as the software, while very effective for FMEA table
completion, result in a much larger Kripke structure
for the model-checker. Simply put, now we have a
larger set of components that we are formally veri-
fying. More importantly, for each component that is
added, the total number of possible states (of the hard-
ware and software in simulation) gets multiplied by
the number of states of the additional component.

A very important observation is that, typically,
such hardware components only depend on a very
small software module – let’s call it the driver soft-
ware (in the above example, that role is played by the
state machine in Fig. 1b) – and they do not depend
on the many other components or software modules.
Thus, one shall identify independent sub-models, for
the purposes of model checking, whose state-space
would be much smaller. The end result is that the
model-checking that is repeated for every entry of the
FMEA table would be, in fact, much faster, having
an overall dramatic improvement in verification times
and the completion of the FMEA table.

3 INDEPENDENT SUB-MODEL
IDENTIFICATION

We propose a method to identify dependencies be-
tween components. We use the semantics and sequen-
tial scheduling (Estivill-Castro et al., 2012b; Estivill-
Castro et al., 2012a) proposed for logic-based finite-
state machines (FSMs). These FSMs consist of a
set S of states and a transition table T : S ⇥ E ! S
. There is an initial state s0 2 S, and for each state,
the transitions leading out of the state are ordered in
a sequence. Transitions are labeled by an expression
e 2 E, and these expressions are evaluated in deter-

ministic order (and time) by an expert system (the ex-
amples in the literature use Decisive Plausible Logic
(DPL) (Estivill-Castro et al., 2012b; Estivill-Castro
et al., 2012a), but the expressions can also be Boolean
expressions of an imperative programming language
such as C, C++, or Java (or any decidable logic, that
provides an answer in predictable time). The point is
that execution of an vector of these machines (such as
the ones in Fig. 1 in the previous section) is sequenced
deterministically by a pre-defined schedule. Each ma-
chine in the vector receives a pre-defined number of
ringlets it executes before execution passes to the next
machine in the vector. The execution token passes
back to the first machine after the last machine com-
pletes its allocated ringlets. A ringlet consist of eval-
uating the OnEntry section of the current state (if it
is the first time control arrives to this state from an-
other state in this machine), followed by evaluation of
the expressions in the list of transitions until an ex-
pression evaluates to true. In this case, the OnExit
section is evaluated and the ringlet concludes. If the
list of transitions is exhausted without any expres-
sion becoming true; then the Internal section of the
state completes and the ringlets also conclude. Thus a
ringlet is the complete assessment of the current state.

The shared variables between the different mod-
ules (FSMs) are called external variables and are man-
aged on a repository architecture named the white-
board (Hayes-Roth, 1988). When the execution token
arrives at a machine, it makes a local copy of any ex-
ternal variables it will use in the current state. We re-
fer to this as the READ footprint on the whiteboard.
Before the execution token of an FSMs is handed
back, the machine copies to the whiteboard any ex-
ternal variables it has modified locally. We refer to
this as the WRITE footprint of the state. This ensures
there is never a race condition between the FSMs that
are running concurrently under the predefined sched-
ule (and thus, there is no need for further mechanisms
to protect shared variables or synchronise FSMs).

For a FSM, the union of all the READ footprints
of its states is called the REQUIRES set of the FSM.
Similarly, the union of all the WRITE footprints of
its states is called the PROVIDES set. Note that
it has been shown that the REQUIRES set and the
PROVIDES set of an FSM can be computed from the
static analysis of the FSM description (Estivill-Castro
and Hexel, 2011).

We can compute a dependency (impact) graph be-
tween the FSMs in a vector, given the REQUIRES
set and the PROVIDES set of the FSMs in that vec-
tor. That is, we can find the dependency graph of the
modules that constitute the software. There, nodes
of the graph are the modules (the FSMs), while there

Identification	 of	
independent	 sub-‐modules	

s  Whiteboard	 infrastructure	 holds	 the	 shared	 variables	

s  Sequential	 execution	 control	 the	 state	 explosion	

s  FSMs	 have	 a	 READ	 phase	 before	 they	 execute	 a	 ringlet	

s  An	 FSM’s	 WRITE	 of	 the	 variables	 is	 not	 in	 a	 race	 condition	
with	 other	 FSMs	

s  The	 REQUIRES	 set	 of	 an	 FSMs	 is	 the	 set	 of	 shared	
variables	 it	 reads	 a	 value	 from	

s  The	 PROVIDES	 set	 of	 an	 FSM	 is	 the	 set	 of	 shared	 variables	
it	 modifies	

13	

We	 identify	 the	 (effect)	
dependencies	 among	 FSMs	

s  A	 dependency	 graph	

s  Nodes	 are	 the	 behavior	 modules	 (FSMs)	

s  a	 directed	 edge	 from	 FSM	 M1	 to	 FSM	 M2	 if	 the	
REQUIRES	 set	 of	 M2	 has	 a	 non-‐empty	 intersection	 with	
the	 PROVIDES	 set	 of	 M1.	 	

14	

is a directed edge from FSM M1 to FSM M2 if the
REQUIRES set of M2 has a not empty intersection
with the PROVIDES set of M1.

It is clear that in this graph, if we find sev-
eral disjoint, connected components, then these are
completely independent, and any model-checking of
the entire system is equivalent to performing model-
checking of each connected component separately.
Simply put, none of the external variables of the
connected components are shared. That is, there is
no communication whatsoever between FSMs in one
connected component and another. They can actually
be scheduled in parallel and not sequentially, and each
would have no impact on the other. This is an extreme
case that would rarely appear in practice as it indicates
that a system is made of completely independent sys-
tems without communication between them. How-
ever, this is an important precursor to the principle we
shall discuss next, as such partitioning illustrates that
the model-checker no longer has to explore a Kripke
state space consisting of the product of all the state
spaces, but indeed we can get away with exploring
essentially separate spaces, only adding their number
of states (rather than multiplying them).

This directed graph can now be analysed by tra-
ditional digraph algorithms. Consider the following
procedure. Let v1 be a node with a non-zero in-
degree. We can find an ancestor (as v1 has an in-
degree larger or equal to 1). If the ancestor has an
in-degree greater than 0, we find an ancestor of the
ancestor. In fact, we conduct a depth-first search con-
sidering the edges in reverse orientation from v1. We
call this graph Av1 (and although we refer to it as the
ancestors of v1, we consider v1 2 Av1).
Lemma 3.1. For any vertex u1 2 Av1 , there is a di-
rected path from u1 to v1 in G; and therefore the
WRITE set of u1 may influence the READ set of v1.

Proof. This follows by induction and transitivity on
the length of the path from u1 to v1.

We refer to the construction of Av1 for a vertex v1
as the ancestor exploration step with focus v1.

As a consequence of Lemma 3.1 we have the fol-
lowing observation.
Observation 3.2. If there is a directed path from a
node v1 to a node v2, then v1 and v2 must be analysed
jointly.

Conversely, if there are two nodes v and u, and
there is no directed path from v to u and there is no
directed path in the other direction either (from u to
v), then then nodes u and v can be analysed separately.

Thus, what we are aiming for is a decomposition
of the graph G = (V,E) of dependencies into a cover
Ĉ = {C1, . . . ,Ct} so that

1" 2"

3"

4"

5"

6"

7"

8"

9"

1"

3"

4"

5"

9"

2"

3"

4"

5"

9"

5"

6"

7"

8"

9"

a)" b)"

Figure 4: A dependency graph, and b) its cover into 3 com-
ponents.

1. every node is included; that is
S

C2Ĉ C =V ,

2. each component C 2 Ĉ of this cover has the prop-
erty that if u and v are vertices in C, then there is
a path in C form u to v or a path in C from v to u,

3. each component is ancestor-maximal, that is,
there is no vertex v 62C so that there is a path from
v to some vertex u 2C.

Moreover, we aim for a cover with minimum number
of components. For illustration, consider the graph in
Fig. 4a). This graph’s cover is shown by the 3 compo-
nents in Fig. 4b). Note that there is no further ancestor
to any vertex that belongs to a component outside the
component. Also, vertex 1 and vertex 2 are in dif-
ferent components, as in the graph itself, there is no
directed path in either direction.

To compute this cover we recall the classical de-
scription (Aho et al., 1974) of depth-first search (both
for a directed graph and an undirected graph). We
reduce the problem to connected components by ap-
plying depth-first search to the undirected version of
the graph. Thus, in what follows, we assume that the
undirected version of the graph is connected. Then,
we can take any vertex v1 with a non-zero in-degree
and find its ancestors by using directed depth first
search (but following the directed edges in reverse
direction). Moreover, the depth directed depth first
search produces (Aho et al., 1974, page 188)
tree edges which lead to new vertices during the

search and form the topological-sort tree,
forward edges which go from ancestors to proper de-

scendants but are no tree edges
back edges which go from descendants to ancestors,
cross edges which go between vertices that are nei-

ther ancestors not descendants of one another.
Thus, the depth-first search in reverse direction from
v1 has leave nodes of the topological-sort tree. Let u
be a leave node. If such a leave u does not have a back
edge, then u is a maximal ancestor. The starting set of
ancestors consist of u alone. If u has a back edge,
then u is in a cycle and we take all the vertices in all
the cycles involving u as the starting set of ancestors.

Observations	

s  Definition:	 If	 v1	 is	 a	 vertex	 of	 in-‐degree	 NOT	 0,	 Av1	 is	
the	 set	 of	 ancestor	 of	 v1	 and	 includes	 v1	

s  Lemma	 3.1.	 For	 any	 vertex	 u1	 ∈	 Av1	 ,	 there	 is	 a	 directed	
path	 from	 u1	 	 to	 v1	 	 in	 G;	 and	 therefore	 the	 WRITE	 set	
of	 u1	 	 may	 influence	 the	 READ	 set	 of	 v1	 .	 	

s  Observation	 3.2.	 If	 there	 is	 a	 directed	 path	 from	 a	
node	 v1to	 a	 node	 v2,	 then	 v1	 and	 v2	 must	 be	 analyzed	
jointly.	 	

15	

The	 cover	

s  A	 decomposition	 of	 the	 graph	 G	 =	 (V,	 E)	 of	
dependencies	 into	 a	 cover	 C	 ={C1,...,Ct}	 so	 that	 	

1.  every	 node	 is	 included;	 that	 is	 	 UC∈C	 C	 =	 V	 ,	 (is	 a	 cover)	

2.  each	 component	 C	 ∈	 C	 of	 this	 cover	 has	 the	 property	
that	 if	 u	 and	 v	 are	 vertices	 in	 C,	 then	

a.  	 there	 is	 a	 path	 in	 C	 form	 u	 to	 v	 or	 	
b.  a	 path	 in	 C	 from	 v	 to	 u,	 	

3.  each	 component	 is	 ancestor-‐maximal,	 that	 is,	 there	 is	
no	 vertex	 v	 outside	 	 C	 so	 that	 there	 is	 a	 path	 from	 v	 to	
some	 vertex	 u	 ∈	 C.	 	

16	

Algorithm	
s  Depth	 First	 Search	
s  Classification	 of	 edges	

s  tree	 edges	 which	 lead	 to	 new	 vertices	 during	 the	 search	 and	
form	 the	 topological-‐sort	 tree,	 	

s  forward	 edges	 which	 go	 from	 ancestors	 to	 proper	
descendants	 but	 are	 no	 tree	 edges	 	

s  back	 edges	 which	 go	 from	 descendants	 to	 ancestors,	 cross	
edges	 which	 go	 between	 vertices	 that	 are	 neither	 ancestors	
not	 descendants	 of	 one	 another.	 	

s  Find	 maximal	 ancestors	 of	 v1	 by	 Depth	 First	 Search	 in	
reverse	 direction	

s  Directed	 forward	 Depth	 First	 Search	 from	 Maximal	
ancestors	

17	

When	 do	 we	 find	
components	

s  there	 is	 a	 node	 v	 that	 has	 two	 or	 more	 children	 in	 the	
topological-‐sort	 tree,	 	

s  there	 is	 no	 back	 edge	 from	 any	 descendant	 of	 v	 in	
the	 topological-‐sort	 to	 an	 ancestor	 of	 v	 	

s  there	 is	 no	 forward	 edge	 from	 an	 ancestor	 of	 v	 to	 a	
descendant	 of	 v.	 	

s  Plus	 some	 other	 checks	
s  see	 paper	

18	

Example	 with	 the	
microwave	 oven	

19	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

The	 cover	

20	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

Comparison	

21	

Microwave_Engine.Microwave_Bell. Microwave_Light.

Microwave_Timer.

Door.Bu8on.

Light.Engine_Mo9on.Sound_Speaker.

Figure 5: The dependencies of the modules of the
Microwave Oven.

The next step consists of performing a directed
depth first search from each vertex in the set of an-
cestors. We obtain the same classification as before
of all the edges of the graph. However, we find com-
ponents every time

1. there is a node v that has two or more children in
the topological-sort tree,

2. there is no back edge from any descendant of v in
the topological-sort to an ancestor of v

3. there is no forward edge from an ancestor of v to
a descendant of v.

When such a node v is found, then we have a candi-
date component that consists of all the ancestors of v
with the child branch Bi that has no back edges em-
anating and no forward edges arriving. The candi-
date components share v and the ancestor of v. That
is, they are of the form Bi [Av and are as many as
child branches Bi of v that have no back edges and no
forward edges. However, candidate components may
need to be extended to be ancestor closed. This is be-
cause, although we built the starting set of ancestors
from v1 and because v is a descendant of v1, there may
be nodes in Bi that have other ancestors. But complet-
ing each candidate component Bi[Av to a component
consist of a depth-first search (with edges considered
in the reverse direction). This may actually result in
fusing some candidate components.

If finding components from the starting set of an-
cestors of v1 covers the entire graph, then the process
terminates. If not, then the process is repeated with a
new vertex of in-degree larger than zero in the part not
covered playing the role of v1 in the above algorithm.

Since depth-first search is linear on the number
of edges and the number of vertices of a graph, and
clearly, the process of identifying the decomposition
only processes a vertex at most 3 times, the entire
algorithm finds the decomposition into independent
components for model-checking in linear time.

Microwave_+
Bell+

Microwave_+
Timer+

Door+Bu2on+

Sound_Speaker+

Microwave_+
Engine+

Microwave_+
Timer+

Door+Bu2on+

Engine_Mo:on+

Microwave_+
Light+

Microwave_+
Timer+

Door+Bu2on+

Light+

Figure 6: The cover of the dependencies graph (Fig. 5) into
ancestor closed and maximal components.

Table 2: Comparisons Kripke structure size (NuSMV
file size) and generation time (gufsm CPU time) of the
Microwave Oven case study.

Component CPU Time Space
Combined graph 2,557.32 s 287,877,511 bytes
Bell subgraph 0.27 s 2,817,073 bytes
Engine subgraph 0.22 s 2,457,880 bytes
Light subgraph 0.22 s 2,458,762 bytes

4 EVALUATION

To demonstrate our point we now review the situa-
tion with the Microwave Oven case study introduced
earlier. We suggest that this case study is particularly
illustrative of the situation where many actuators are
controlled by combinations of a few sensors. This is
perhaps where our approach has the highest impact
in practice. Fig. 5 shows the dependencies of the mi-
crowave modules. Actuators are shown in dark boxes,
while sensors appear in clear boxes. Software mod-
ules appear in shaded boxes. These dependencies can
also be found by converting the logic-based FSMs to
decision trees (Billington et al., 2010) and using tools
such as BECCIE (Wen and Dromey, 2004).

Although all modules depend on the two sensors
(the door and the button), there is a clear three-way
split at the software module (the FSM in Fig. 1a) that
acts as the timer. Thus, we can decompose the depen-
dency graph into the modules shown in Fig. 6.

We now compare the resources required to per-
form traditional model checking (involving all the
modules) with our approach here. The results in Ta-
ble 2 show a clear improvement in both time and
space when generating NuSMV data with gufsm com-
pared to the explosion of considering all FSMs in
combination. The Kripke structure for the complete
model of the Microwave Oven is 2 orders of magni-
tude larger! As a result, the CPU time to process is
4 orders of magnitude larger. In this example, it is
the difference from fractions of a second of CPU time
versus close to hours of CPU time. Note that the 3 in-
dependent subgraphs together do not add to one single

Another	 example,	 the	
mine	 pump	

22	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Logic-‐labeled	 FSMs	 for	 the	
mine	 pump	

23	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

The	 graph	 for	 the	 mine	
pump	

24	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Comparison	

25	

a)

INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
indicateOn=0; indicateOff=0; }
OnExit {}
{}

 !supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOff && !supervisorButtonOn

supervisorButtonOn && !supervisorButtonOff
INDICATE_ON

OnEntry { indicateOn=1; }
OnExit { indicateOn=0; }
{}

INDICATE_OFF
OnEntry { indicateOff=1; }
OnExit { indicateOff=0; }
{}

b)

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

RUNNING
OnEntry {motor=1;}
OnExit {}
{}

c)

!CO2SensorHigh && !airFlowLow

CO2SensorHigh || airFlowLow RINGING
OnEntry {bell=1;}
OnExit {}
{}

NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

Figure 7: Complete model of the mine pump. a) A 3-state FSM for the supervisor. b) A 2-state machine for controlling the
pump. c) A 2-state machine for controlling the alarm.

Table 3: Mine Pump requirements.
Req. Description

R 1
The pump extracts water from a mine shaft. When the water vol-
ume has been reduced below the low-water sensor, the pump is
switched off. When the water raises above the high-water sensor
it shall switch on.

R 2
An human operator can switch the pump on and off provided the
water level is between the high-water sensor and the low-water
sensor.

R 3
Another button accessed by a supervisor can switch the pump on
and off independently of the water level.

R 4
The pump will not turn on if the methane sensor detects a high
reading.

R 5
There are two other sensors, a carbon monoxide sensor and an air-
flow sensor, and if carbon monoxide is high or air-flow is low, and
alarm rings to indicate evacuation of the shaft.

second of CPU time (but achieve the same in terms of
formal verification)!

Another example is the mining pump. This case is
also discussed prominently in the literature (Shrivas-
tava et al., 1993; Sloman and Kramer, 1987; Grunske
et al., 2011; Winter and Yatapanage, 2011). It is
also linked to the literature of software controlling
safety-critical systems (Kramer et al., 1983). It has
been used to present model-driven engineering, for
performing model checking, for performing failure
modes and effect analysis. The requirements (Burns
and Lister, 1991) are reproduced in Table 3.

Fig. 7 shows the logic-labeled finite-state
machines that constitute the controlling soft-
ware (Estivill-Castro et al., 2012a). The most
interesting part in this example is that the dependency
graph consists, in fact, of two disjunct, connected
components (Fig. 8). Therefore, when we split

Supervisor_Control/Alarm_Control/ Pump_Control/

Supervisor/
Bu5on/

Pump_Engine/Sound_Speaker/

CO2//
Sensor/

Methane/
Sensor/

Air/Flow/
Sensor/

Low/
WaterB
Level/
Sensor/

High/
WaterB
Level/
Sensor/

Operator/
Bu5on/

Figure 8: Mine Pump Dependencies.
Table 4: Resource comparison for Kripke structure of the
Mine Pump case study using gufsm and NuSMVas in Table 2.

Component CPU Time Space
Combined graph 22,356.51 s 2,611,097 Kb
Alarm subgraph 0.003 s 10 Kb
Supervisor subgraph 3.025 s 25,703 Kb

independent subgraphs, we find the two connected
components. The resulting differences in Table 4 are
even more impressive (5 orders of magnitude in size
7 orders of magnitude in time for the alarm).

5 CONCLUSIONS

Formal verification by model checking and the con-
struction of FMEA tables had been reported to take
CPU times of the order of days or weeks for some
well-discussed case studies (Grunske et al., 2011).

Summary	
s  Formal	 verification	 by	 model	 checking	 and	 the	

construction	 of	 FMEA	 tables	 had	 been	 reported	 to	
s  	 take	 CPU	 times	 of	 the	 order	 of	 days	 or	 weeks	 for	 some	 well-‐

discussed	 case	 studies	 (Grunske	 et	 al.,	 2011).	 	

s  We	 have	 shown	 here	 that,	 for	 logic-‐labeled	 FSMs,	
s  	 we	 can	 efficiently	 split	 the	 corresponding	 dependency	 graph	

and	 	
s  obtain	 components	 of	 the	 graph	 that	 can	 be	 analyzed	

independently.	 	

s  Consequently	
#	 of	 states	 of	 the	 system	 =	 Π	 #	 of	 states	 of	 each	 subsystem	
s  	 replaced	 by	

#	 of	 states	 of	 the	 system	 =	 Σ	 #	 of	 states	 of	 each	 subsystem	

26	

Conclusions	

s  With	 decomposition,	 	
s  even	 only	 identifying	 two	 or	 three	 such	 components,	

s  results	 in	 improvements	 in	 performance	 of	 several	 orders	
of	 magnitude	 for	 a	 single	 model-‐	 checking	 exercise	 	

s  Applicable	 particularly	 to	 loosely	 coupled	 systems	

s  Kripke	 structures	 in	 description	 languages	 of	
common	 tools	 such	 as	 NuSMV	 can	 be	 generated	 and	
verified	 much	 more	 efficiently.	 	

27	

28	

