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AIBO Vision Workshop 2 (AVW2)

B AIBO Vision Workshop 2

. Designed to assist
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development of vision
systems

@ LL: Symmet @

— Divides the process of
vision processing into a
number of stages

— Each processing stage Is
encapsulated by a user-
created “filter” object

The result of each filter can be viewed and assessed in relation to all
the other filters in the processing chain



AVW?2 Conceptually
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Image Data !

_Source _— .41 Data Is sourced from an
(V'deRO bCatmera, external device
obot, i

Image Repository)

2. Each filter performs an
Individual processing step using
the cumulated data available to
each previous filter

3. The last filter in the pipeline
produces the desired output




AVW?2 Input Filters

. There are several input filters that act as data
sources for the vision pipeline

. AVW?2 supports input:

— From files (BMP, JPeg, Giff, and It's own native
format Al2)

— Over network connections (we use this to receive
Images from AIBOs over wireless network)

- From any standard windows video source (supporting
Microsoft's Video For Windows (VFW) and
DirectShow standards)



AVW?2 Processing Filters

. We want to run code that is under development In
AVW?2

— Not on target device
- We will see why later

. AVW?2 allows the user to run unchanged, target
platform code as either:

— A pre-compiled library (DLL)
— A scripted component interpreted at runtime
— A scripted component compiled at runtime



Filter Mechanics

. The user creates a filter object which
wraps the target code

— The filter must convert incoming data to the desire
format and re-convert outgoing data back to
AVW?2's format

— The functionality for displaying images, interactin
oy with AVW?2 and the user (and many other features
discussed later) is inherited from the base class
making the filter very “light” and easy to implement
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Processing Chains

. Filters are inserted, deleted and connected Into
processing chains at runtime

. The user creates a chain that emulates the order of

processing on the target device enabling the entire
Image processing

. Data Is passed down the chain starting from the
Input filters

. AVW2 manages dependencies between filters In
the chain

— Even when it knows nothing of the data types of the filter



A Processing Chain Example
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Why Chains, not Pipelines?

. We can use the = 4150 vision Vorshop 2
branching structure [x s
of a chain to
compare the output
of two different
filters that perform
the same task
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Why is AVW2 Necessary?

. Development of vision systems is very difficult:

— Complex, often slow algorithms
— Large amounts of source data
— Difficult to debug code on an incoming vision stream
. If you are developing for an embedded device (such
as a mobile robot) then the difficulties compound:
— Often only text I/O debugging facilities provided
— Lack of profiling and runtime analysis support
— Lack of processing power
— Hardware dependencies



How Does AVW2 Help?

. Can be used as a development platform

. Can be used as a debug/test environment

. Can be used as a code profiler and performance
evaluation tool

. Immerses the developer into the vision processing
pipeline where each step can be evaluated in the
context of the whole pipeline and in a visual
manner

. No longer just a support tool for AIBO
development!



AVW?2 as a Development Platform

. AVW?2 runs the CINT C/C++ Interpreter core

. Code intended for the target device can be run
and evaluated, without compilation, in a filter
that reads C++ scripts

. It's easy to later compile it into a DLL to run
without the overhead of the scripting engine —
simply add “#pragma compile” at the start of the
script!


http://root.cern.ch/root/Cint.html

AVW?2 as a Debug/Test Environment

. It is possible to set up a real-time stream of
Images from the target device to AVW?2 and to
evaluate the output of each filter on a per-image

basis
. You can even save the stream for later image-by-
Image analysis

. AVW?2 supports code breakpoints, variable
Inspection and alteration, step-by-step debugging
and most other modern debugging facilities

— From both scripts and compiled filters



AVW?2 as a Code Profiler and
Performance Evaluation Tool

. Each filter i1s automatically profiled every time it is

executed

. Filters execute
strictly linearly
SO It Is possible
to compare
profile data
between two
filters
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. Thus you can compare two different

algorithms that perform the same job on

the same data
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‘ Questions? Comments?
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