
Real-Time Embedded Vision
System Development using
AIBO Vision Workshop 2

Nathan Lovell
Griffith University, Australia

AIBO Vision Workshop 2 (AVW2)

● Designed to assist
development of vision
systems
– Divides the process of

vision processing into a
number of stages

– Each processing stage is
encapsulated by a user-
created “filter” object

The result of each filter can be viewed and assessed in relation to all
the other filters in the processing chain

AVW2 Conceptually

Image Data
Source

(Video Camera,
Robot,

Image Repository)

AVW2

1. Data is sourced from an
external device

2. Each filter performs an
individual processing step using
the cumulated data available to
each previous filter

3. The last filter in the pipeline
produces the desired output

AVW2 Input Filters

● There are several input filters that act as data
sources for the vision pipeline

● AVW2 supports input:
– From files (BMP, JPeg, Giff, and it's own native

format AI2)
– Over network connections (we use this to receive

images from AIBOs over wireless network)
– From any standard windows video source (supporting

Microsoft's Video For Windows (VFW) and
DirectShow standards)

AVW2 Processing Filters

● We want to run code that is under development in
AVW2
– Not on target device
– We will see why later

● AVW2 allows the user to run unchanged, target
platform code as either:
– A pre-compiled library (DLL)
– A scripted component interpreted at runtime
– A scripted component compiled at runtime

Filter Mechanics

● The user creates a filter object which
wraps the target code
– The filter must convert incoming data to the desired

format and re-convert outgoing data back to
AVW2's format

– The functionality for displaying images, interacting
with AVW2 and the user (and many other features
discussed later) is inherited from the base class
making the filter very “light” and easy to implement

Target Code
Convert

to
TC

format

Convert
to

AI2
format

Draw any extra
Debug Data

Processing Chains

● Filters are inserted, deleted and connected into
processing chains at runtime

● The user creates a chain that emulates the order of
processing on the target device enabling the entire
image processing

● Data is passed down the chain starting from the
input filters

● AVW2 manages dependencies between filters in
the chain
– Even when it knows nothing of the data types of the filter

A Processing Chain Example

Input from a file
Colour segmentation

Connected regions
of colour Ball recognition

Data passed

Why Chains, not Pipelines?

● We can use the
branching structure
of a chain to
compare the output
of two different
filters that perform
the same task

Why is AVW2 Necessary?

● Development of vision systems is very difficult:
– Complex, often slow algorithms
– Large amounts of source data
– Difficult to debug code on an incoming vision stream

● If you are developing for an embedded device (such
as a mobile robot) then the difficulties compound:
– Often only text I/O debugging facilities provided
– Lack of profiling and runtime analysis support
– Lack of processing power
– Hardware dependencies

How Does AVW2 Help?

● Can be used as a development platform
● Can be used as a debug/test environment
● Can be used as a code profiler and performance

evaluation tool
● Immerses the developer into the vision processing

pipeline where each step can be evaluated in the
context of the whole pipeline and in a visual
manner

● No longer just a support tool for AIBO
development!

AVW2 as a Development Platform

● AVW2 runs the CINT C/C++ interpreter core
– http://root.cern.ch/root/Cint.html

● Code intended for the target device can be run
and evaluated, without compilation, in a filter
that reads C++ scripts

● It's easy to later compile it into a DLL to run
without the overhead of the scripting engine –
simply add “#pragma compile” at the start of the
script!

http://root.cern.ch/root/Cint.html

AVW2 as a Debug/Test Environment

● It is possible to set up a real-time stream of
images from the target device to AVW2 and to
evaluate the output of each filter on a per-image
basis

● You can even save the stream for later image-by-
image analysis

● AVW2 supports code breakpoints, variable
inspection and alteration, step-by-step debugging
and most other modern debugging facilities
– From both scripts and compiled filters

AVW2 as a Code Profiler and
Performance Evaluation Tool

● Each filter is automatically profiled every time it is
executed

● Filters execute
strictly linearly
so it is possible
to compare
profile data
between two
filters

• Thus you can compare two different
algorithms that perform the same job on
the same data

Demo

Questions? Comments?

	Real-Time Embedded Vision System Development using AIBO Vision Workshop 2
	AIBO Vision Workshop 2 (AVW2)
	AVW2 Conceptually
	
	
	
	
	A Processing Chain Example
	Why Chains, not Pipelines?
	Why is AVW2 Necessary?
	How Does AVW2 Help?
	AVW2 as a Development Platform
	AVW2 as a Debug/Test Environment
	AVW2 as a Code Profiler and Performance Evaluation Tool

