Real-Time Embedded Vision
System Development using
AIBO Vision Workshop 2

Nathan Lovell
Griffith University, Australia

AIBO Vision Workshop 2 (AVW2)

B AIBO Vision Workshop 2

. Designed to assist

Debug He
® File: 2.bmp ﬁi

development of vision
systems

@ LL: Symmet @

— Divides the process of
vision processing into a
number of stages

— Each processing stage Is
encapsulated by a user-
created “filter” object

The result of each filter can be viewed and assessed in relation to all
the other filters in the processing chain

AVW?2 Conceptually

ﬁ AVW?2

Image Data !

_Source _— .41 Data Is sourced from an
(V'deRO bCatmera, external device
obot, i

Image Repository)

2. Each filter performs an
Individual processing step using
the cumulated data available to
each previous filter

3. The last filter in the pipeline
produces the desired output

AVW?2 Input Filters

. There are several input filters that act as data
sources for the vision pipeline

. AVW?2 supports input:

— From files (BMP, JPeg, Giff, and It's own native
format Al2)

— Over network connections (we use this to receive
Images from AIBOs over wireless network)

- From any standard windows video source (supporting
Microsoft's Video For Windows (VFW) and
DirectShow standards)

AVW?2 Processing Filters

. We want to run code that is under development In
AVW?2

— Not on target device
- We will see why later

. AVW?2 allows the user to run unchanged, target
platform code as either:

— A pre-compiled library (DLL)
— A scripted component interpreted at runtime
— A scripted component compiled at runtime

Filter Mechanics

. The user creates a filter object which
wraps the target code

— The filter must convert incoming data to the desire
format and re-convert outgoing data back to
AVW?2's format

— The functionality for displaying images, interactin
oy with AVW?2 and the user (and many other features
discussed later) is inherited from the base class
making the filter very “light” and easy to implement

R R R e R RS
KSEREEREEESKIE IR KKK XK KKK IESIEEELEL LRI AKX XK X KKK XXX
PCIQSEEKEEEERIKIRIAIK KKK KK IKIK XX KKK KX X XXX IIRAK KK KKK XXX IKXKX
KSKKEESEERIK IRIIRIIK KKK IK XX X XK XX XX KK KK SRR KKK HK X KKK X XS
PXCKEELEEELIKIRIIRIA X KK KK I X XX XK KX X XXX IIIRIRIK KR KKK XX XX x
KK REEEIRERRX O0KGR KRR AR I IR RIS R KK ARARKK
XK RGN QR SR IEICIRR IR IIESRLEIGIRIIKIRIIRH IR K IR KKK X
KSR RIKEERRX R RIRICIIKRIIIKK SRR ICIZIIRRIRIIHKHKIKHK IR HHK KX K]
PR RREICIARIIIIRIIIKIC KK AKARI IR KK X XXX 3R HXIRIIKIKIRIICIR IR KK
KKK IIRIRHRIIHKHKIK KK I IR IRK KK KX IEHRHRIIIIXIRAIKIIHKHK XX]
PSCLREAIIIIIH KX I XK X XXX ARKII IR KI XXX XXX RII X X X XXX X
KX XX < XK ISR IR KX R RHAKI IR X XXX XS
1000 e Terede KRR IIK X KX XA 0000Y” oaze SOV OS, (OO0
JLosrswss Torele® FoRetetat0se %00t M020%0% ohe NSSTatetettaY (oetteteretets
ROOO OO 9208 T’ 0" 5 e s pt%0%% SOOVO? o 0 sa ¥ e SO
10000000 %0S 88 %% A% 0 L0 % NS SN v Y ce. @ v Neeee
XSRS R KR S350 S8 5 D80T (RO BRSOt % % 5 i &% vesees
KRESKIIRAKS % e Tl BOOLS (000 %% Fo K KK
22005005 905 4 000 0 % rere®l %% GOSN O B N B e b
KRR 001 598 0387 1 TN ReTete *geteT L %% 3) I8 eseleletess
NS00 0 9308 V8 K R R B M R T R XA
J%020%0%%8 Sote%, Y9, 4 %, 50, 0% Fe%eteds, 058, & 2 KN
PACIRIRAIN X R SIS X I W SIS X I X X W < M WX A HX KA
KX IRIIRKRKIRI K KKK XX @ X LXK XXX XRIRIXN X XRX X X XK KX IRAX KRR
X O000RHRK IR IK KRR I IKN R X KKK XK RXK KR IR K KKK KKK K IKRKRARHR AKX
K OQAREICICSRLEIREICISISR I X XXX X IXRK K KKK IR AR IKIK XK KK I IR RRIHHK K S
PCOCOCRRIKIIIKRICIZIC AR AKRIIRIKII IR IRK KIK KKK KI K IR K RIK IR KK RAIHHKKA
ORISR IR IIIIKRIRIRIKIK IR IR HK K KI KKK I HK KKK XX KA
ERSCIIKRIKIKERRIIKIARIIRIIHK AR ARIIHK IR IRI XXX KX XTI R KHX KKK RAIK]
RICICIHIERKIRIIIRIIIIRAIK KK KI K IR I IR KK IKIKRXNK MR HX KK KX K RALKK S
EORACEKLELELELELIGGRH I XX KKK I XX KX KK XX KK IR KKK XRKAA
RIQIGK KL RIRIIIKIIK KK XX XXX XK XK XXX KKK IRKIIXIXIH XXX KK IKRARS
B e R OISR
RS

Al2

Processing Chains

. Filters are inserted, deleted and connected Into
processing chains at runtime

. The user creates a chain that emulates the order of

processing on the target device enabling the entire
Image processing

. Data Is passed down the chain starting from the
Input filters

. AVW2 manages dependencies between filters In
the chain

— Even when it knows nothing of the data types of the filter

A Processing Chain Example

B AIBO Vision Workshop 2
File Component Debug Help

% File: T2PY16.AIF @ : Decision List Class .:—E. DLL: Blob Former .:—E. L: Blob Rule Process .:
4 ‘ m
o ¢
-

§1;,_~'___: [159,41] ______ |};fﬁ| 12 [(46.0)] 12| (16, 70)

O

14/(153, 142) A

/ ! T i

Input from a file Connected regions \ 3
_ of colour Ball recognition
Colour segmentation

Data passed . : :
- > L ;4 >L -‘ L -‘-

Why Chains, not Pipelines?

. We can use the = 4150 vision Vorshop 2
branching structure [x s
of a chain to
compare the output
of two different
filters that perform
the same task

X File: img13.ai2

=

q
J

'-ﬁ

ft £/ (197, 151) A

Why is AVW2 Necessary?

. Development of vision systems is very difficult:

— Complex, often slow algorithms
— Large amounts of source data
— Difficult to debug code on an incoming vision stream
. If you are developing for an embedded device (such
as a mobile robot) then the difficulties compound:
— Often only text I/O debugging facilities provided
— Lack of profiling and runtime analysis support
— Lack of processing power
— Hardware dependencies

How Does AVW2 Help?

. Can be used as a development platform

. Can be used as a debug/test environment

. Can be used as a code profiler and performance
evaluation tool

. Immerses the developer into the vision processing
pipeline where each step can be evaluated in the
context of the whole pipeline and in a visual
manner

. No longer just a support tool for AIBO
development!

AVW?2 as a Development Platform

. AVW?2 runs the CINT C/C++ Interpreter core

. Code intended for the target device can be run
and evaluated, without compilation, in a filter
that reads C++ scripts

. It's easy to later compile it into a DLL to run
without the overhead of the scripting engine —
simply add “#pragma compile” at the start of the
script!

http://root.cern.ch/root/Cint.html

AVW?2 as a Debug/Test Environment

. It is possible to set up a real-time stream of
Images from the target device to AVW?2 and to
evaluate the output of each filter on a per-image

basis
. You can even save the stream for later image-by-
Image analysis

. AVW?2 supports code breakpoints, variable
Inspection and alteration, step-by-step debugging
and most other modern debugging facilities

— From both scripts and compiled filters

AVW?2 as a Code Profiler and
Performance Evaluation Tool

. Each filter i1s automatically profiled every time it is

executed

. Filters execute
strictly linearly
SO It Is possible
to compare
profile data
between two
filters

B AIBO Vision Workshop 2

File Component

Debug Help

=]

ol

VW Filter q:

‘-r

Gl F ¥

_® : Decision List Class .:

B

(144, 40) Cl&

1B

E. DLL: Zobel Edge

12071100 A

. Thus you can compare two different

algorithms that perform the same job on

the same data

jahed DLL: Zobel Edge filter. Frocessing time: 50 ms
w frarme: WPV
pritng DLL: Decision List Classifier filter

brting DL Zobel Edge filter

ished DLL: Zobel Edge filter. Frocessing time: 49 ms
w frame: VRV

britng DLL: Decision List Classifier filter

brting DLL: Zobel Edge filter

ished DLL: Zobel Edge filter. Processing time. 49 ms
w frame: W

brting DLL: Decision List Classifler filter

pritng DLL: Zobel Edge filter

jahed DLL: Zobel Edge filter. Frocessing time: 48 ms
w frarme: W FWW

priing DLL: Decision List Classifier filter

brting DL Zobel Edge filter

ished DLL: Zobel Edge filter. Frocessing time: 458 ms
w frame: VRV

britng DLL: Decision List Classifier filter

brting DL Zobel Edge filter

ished DLL: Zobel Edge filter. Processing time. 48 ms
w frame: WV

Starting DLL: Declsion List Classifier filter

Finished DLL: Decision List Classifier filter. Processing time:

Starting DLL: Zobel Edge fitter
Finished DLL: Zobel Edge titer. Processing time: 49 ms

| []clear on new frame

ished DLL: Decision List Classifier filter. Frocessing time:

ished DLL: Decision List Classifier filter. Processing time:

ished OLL: Decision List Classifier filter. Frocessing time:

ished DLL: Decision List Classifier filter. Frocessing time:

iahed DLL: Decision List Classifier filter. Processing time:

4 ms

4 ms

3 ms

4 ms

3 ms

4 ms

‘ Questions? Comments?

	Real-Time Embedded Vision System Development using AIBO Vision Workshop 2
	AIBO Vision Workshop 2 (AVW2)
	AVW2 Conceptually
	
	
	
	
	A Processing Chain Example
	Why Chains, not Pipelines?
	Why is AVW2 Necessary?
	How Does AVW2 Help?
	AVW2 as a Development Platform
	AVW2 as a Debug/Test Environment
	AVW2 as a Code Profiler and Performance Evaluation Tool

