o3 W=20850Z0

Viad Estivill-Castro

Correctness by Construction with
Logic-Labeled Finite-State Machines
— Comparison with Event-B




Thanks for your interest

Viad Estivill-Castro

School of Information and Communication Technology
Institute for Intelligent and Integrated Systems
Griffith University
Australia

Rene Hexel

School of Information and Communication Technology
Institute for Intelligent and Integrated Systems
Griffith University
Australia

Mi-PAL



Outline

D Motivation

* Model-Driven Development (MDD) vs formal
methods

* Event-B
 Logic-labelled Finite State Machines

D Case Studies

* Bridge — controller

* Car-window Controller

» Conclusions

g Griffit



Model-Driven Development
(MDD)

» Widely successful approach to developing
software

» Ensures traceability, validation against
requirements, and platform independence

D Tools and techniques are resulting in faster
and simpler (easier to maintain) products
and applications than traditional language
parser/compiler or interpreter approaches

g Griffit



MDD illustration (static modelling)

» Data/Class Modelling tools that generate code

* (ER diagrams to SQL CREATE)
* (Class Diagrams to Java class templates)

Flo Edt Cbjects View Notstion Model Settings Tooks Melp

Mi-PAL IS Wy Guriee]



What is Event-B?

» The B method 1s method of
software development based

on B,

* a tool-supported formal method
based around an abstract
machine notation, used 1n the
development of computer
software.

Modeling

' in Event-B
- % System and

g Griffit




Finite-State Machines (FSM)

» Widely used model of behavior in

embedded systems

* QP (Samek, 2008), Bot- Studio (Michel, 2004) StateWORKS (Wagner et al.,
2006) and Math Wo@ StateFlow. The UML form of FSMs derives from OMT
(Rumbaugh et al., 1991, Chapter 5), and the MDD initiatives of Executable UML
(Mellor and Balcer, 2002)

A 2 Nicarors

Modeling Software Click to LOOK INSIDE!
|NA'|'RF§_l: |'Gcé‘}‘|lég with Finite State P Model Driven Architecture

g Machines with Executable UML™

FOR GAMES ... e TomeNR : e
AND A Practical Approach e 4 ]
DESIGN Y

Y SHLAER / STEPHEN J. MELLOR

OBJECT
LIFECYCLES
Modeling the World in States

PRACTICAL

UML STATECHARTS
C/C++ nnnnnnnn ition

mheddeﬂ Svslem?mmmg e

D The original Subsumption Architecture was implemented using the
Subsumption Language

D It was based on finite state machines (FSMs) augmented with timers
(AFSMs)

» AFSMs were implemented in Lisp

1\ G



Event-driven FSMs

Most common approach

» System 1s 1n a state
* waiting
* does not change what is
— doing/happening
e until event arrives
 Events change the state of
the system

gain

JJ

possession

v

Griffit

Defend

UNIVERSIT

UOISSassod

950]




Logic-labeled FSMs

A second view of time (since Harel’s seminal paper)
* Machines are not waiting in the state for events
* The machines drive, execute

* The transitions are expressions in a logic

* or queries to an expert system

attack for a

a
did the team fost Possession?

gy Griffit




Example from robotic soccer

4 ORANGE_BLOB_FOUND

OnEntry { extern blobSizeX; extern blobSizeY;
extern blobArea; extern blobNumPixels;
toleranceRatio = 2; densityTolerance = 3;
badProportionXY = blobSizeX/blobSizeY > toleranceRatio;
badProportionYX = blobSizeY/blobSizeX > toleranceRation;
badDensityVsDensityTolerance =
blobArea / blobNumPixels > densityTolerance;

C L. is_it_p_ball
% BallConditions.d

name { BALLCONDITIONS}. BALL_FOUND

input{badProportionXY}.
input{badProportion¥X}.
input{badDensityVsDensityTolerance}.

BCO: {} => is it a ball.

BCl: badProportionXY => ~is it a ball. BCl > BCO.

BC2: badProportionY¥X => ~is it a ball. BC2 > BCO.

BC3: badDensityVsDensityTolerance => ~is it _a ball. BC3 > BCO.

output{b is it a ball, "is it a ball"}.

Logic labeled FSMs provide deliverative contro

g Griffit



Arrangements of LLFSM

Enable MDD

Provide sequential execution
Avoid concurrency challenges
Can be formally verified

Can be simulated (validated)
So far, compared directly with

« Behaviour Trees, Petr1 nets, Executable UML

Can perform FMEA
BUT, how do they compare with UML-B?

g Griffit



One Minute Microwave

» Widely discussed in the
literature of software
engineering

» Analogous to the X-Ray
machine

* Therac-25 radiation machine
that caused harm to patients

» Important SAFETY feature |

* OPENING THE DOOR
SHALL STOP THE
COOKING

Mi-PAL |lIS




Requirements

Requirements

Description

R1

There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
1s, energize the power-tube) for one minute

R2

If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3

Pushing the button when the door is open has no effect.

R4

Whenever the oven is cooking or the door is open, the light in the oven
will be on.

RS

Opening the door stops the cooking. _

R6

Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7

If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

g Griffit




Logic-labeled Finite-state
machines with DPL

D Step 1: Consider writing the script of music for an orchestra. Write
individual scripts and place together all actuators that behave with the
same actions for the same cues

» Example: The control of the tube (energizing), the fan and the spinning
plate

Microwave Engine
/ cook \

( NOT_COOKING \ ( COOKING
post/ post/
Motion:Stop; Motion:On;

g Griffit



Step 2: Describe the
conditions that result in the
need to change state

% MicrowaveCook.d

Microwave Engine
name {MicrowaveCook} . ok —
/ NOT_COOKING | COOKING )
J_nput{tlmeLeft} . L Mot?:ns:tS/top; J k Mo'tJi(c))SI::/On; J
input{doorOpen}. ~cook
CO: {} => ~cook.

Cl: timeLeft => cook. Cl1 > CO.
C2: doorOpen => ~cook. C2 > CI1.

output{b cook, "cook"}.

Griffit

UNIVERSIT




One of the LLFSMs

% MicrowaveCook.d
Microwave Engine

name {MicrowaveCook} . ok —

/ NOT_COOKING | [ COOKING |
input { timelLeft } . L Mot?:ns:tsltop; J t Mo'tJic:)sI::/On; J
input {doorOpen}. ~cook
CO: {} => ~cook.

Cl: timeLeft => cook. Cl1 > CO.
C2: doorOpen => ~cook. C2 > CIl.

output{b cook, "cook"}.

g Griffit




Step 1 (again): Analyze another
actuator
D Illustration: The light

Microwave Light
/ lightOn \

[ LIGHT_OFF |  LIGHT_ON

kpost/ Lights:Off;J h)ost/ Lights:OnJ

\ ~IightM

g Griffit




Step 2 (again): Describe the
conditions that result in the
need to change state

% Microwavelight.d ‘\Microwave Light
name {MicrowaveLight}. R
( LLLLL _OFF \ LLLLLLL
Lpost/ Lights:Off;J h)ost/ Lights:On; ’
input{timeLeft}.
input{doorOpen}. \\\\\\\‘;fffﬁ///////
LO: {} => ~1ightOn.

Ll: timeLeft => 1lightOn. L1 > LO.
L2: doorOpen => 1lightOn. L2 > LO.

output{b 1lightOn, "lightOn"}.

g Griffit



Step 1 (again): Analyze another

actuator
[llustration: The button

Microwave Button
add \?>§

( DISABLED \ ENABLED

post/ post/
Microwave :DISABLED Microwave : ENABLED

~add

g Griffit



Step 2 (again): Describe the
conditions that result in the
need to change state

Microwave Button
% MicrowaveButton.d add

name {MicrowaveButton} . " bisaBLED h [ ENABLED A

post/ post/
input { doorOpen } . LMicrowave:DISABLED LMicrowave ENABLE J
input {buttonPushed}. N\\\\.~add ////
CBO: {} => ~add.
CBl: buttonPushed => add. CB1 > CBO.
CB2: doorOpen => ~add. CB2 > CBl.

output{b add, "add"}.

g Griffit



Step 1 (again): Analyze another

actuator
¢ [llustration: The bell

‘\Microwave Bell
timeleft .
{BELL_OFF [BELL_ARMED]

/

( BELL_RINGING \ ~timeleft

post/ Sound:On;

g Griffit



Step 2 (again): Describe the
conditions that result in the
need to change state

No need for a logic: timeLeft
- posted by another module

- does not require a proof

Microwave Bell

timeleft —

[BELL_ARMEDJ

/

( BELL_RINGING \ ~timeleft
post/ Sound:On;

g Griffit

BELL_OFF




Step 1 (again): Analyze
another actuator

D Illustration: The timer

TRUE
R{ \ buttonPushed && !doorOpen && (currentTime<4035)
( 1INIT \ ( 2TEST \
OnEntry {int currentTime; extern buttonPushed OnEntry
extern doorOpen; currentTime=0;} {timeLeft=0<currentTime;} 'buttonPushed
OnExit {} OnExit {}
¢ {
TRU
ldoorOpen && timelLeft && timeout(1000000)
( 4 DECREMENT ( 3 ADD_60
OnEntry {currentTime=currentTime-1;} OnEntry {currentTime=60+currentTime;) _
OnExit {} OnExit {timeLeft=1;}
{ {

g Griffit



Embedded systems are
performing several things

D The models 1s made of several finite state-
machines

* Behavior-based control

D With a rich language of logic, the modeling
aspect 1s decomposed
» the action /reaction part of the system

 the states and transitions of the finite-state machine

* the declarative knowledge of the world
* the logic system

g Griffit




The Microwave example
--- We can translate DPL to

propositions

( NOT_COOKING)

OnEntry: ldoorOpen && timel eft

( COOKING )

OnEntry:

motion:=false motion:=true;
! (ldoorOpen && timeleft) J
% \

4 LIGHT_OFF R 4 LIGHT_ON R
OnEntry: doorOpen |l timeLeft OnEntry:
lights:=false lights:=true;

| (doorOpen |l timelLeft)
\ J \_ /

g Griffit



The complete arrangement

Light Motor

2 NOT_SHINE_LIGHT ) doorOpen Il timeLeft 1 SHINE_LIGHT 2 NOT_COOKING \ IdoorOpen && timeleft ‘ 1 COOKING l
OnEntry {int light; light=0} | | OnEntry {light=1:}_ OnEntry {int motor; motor=0;} OnEntry {motor=1;}
OmExit$ _________{ [ OnExitd _____ OmExtt$ ___________|  [OmBxtg
¢ /\ !doorOpen && ! timeLeft \{} ¢

doorOpen |l ! timeLef

xecute 1n predefine
g—n—E)ﬂt—{} ____________ ; _{C})_nE)ﬂt_{}___ SChedule ti ringlets
NG

ENTTTE. of FSM M,
OnEntry {sound=1;} l
timeout(2000000) [T - T T T T T T T~

————————————— ltimeLeft

Y true
\ butthushed}erpen && (currentTime<4035)

1INIT \ ( 2 TEST h
OnEntry {int currentTime; extern buttonPushed OnEntry
extern doorOpen; currentTime=0;} _ _ _ _ _ {timeLeft=0<currentTime} IbuttonPushed
OnmEXit®h _ _ _ _ ______________ OnExit{h ________]
¢ ¢

g Griffit

tru
L]
I lmer ldoorOpen && timeLeft && timeout(1000000)
( 4 DECREMENT \ ( 3 ADD_60 \
OnEntry {currentTime=currentTime-1;} OnEntry {currentTime=60+currentTime;}
OnExit {} OnExit {timeLeft=1;}




Demo video (java)

D http://www.youtube.com/watch?
v=t4uell 067 Xk&feature=relmfu

g Griffit




SIMULATION

HARDWARE

Mi-PAL IS ILV)JUGN'I‘\i/EgSIItT



SIMULATION demo video (C++)
/) Griffil




http.//www.youtube.com/watch?v=Dm3SP3q9 VE




Demo video (C++)

g Griffit



Model Checking and Validation

» Properties

* Property 1: Necessarily, the oven stops (after several
steps, i.e. a small, finite number of transitions in the
Kripke structure) after the door opens.”

* Property-2: “It is necessary to pass through a state in
which the door is closed to reach a state in which the
motor is working and the machine has started.”

* Property-3: “Necessarily, the oven stops(after several
steps, i.e. again, a small, finite number of transitions in
the Kripke structure) after the timer has expired.”

* Property-4: “Cooking may go on for ever (e.g. if the
user repeatedly keeps pressing the add button while the
timer is still running).”

g Griffit



Formal description of the
Property in LTL

» Using NUSMV’s code
* “the cooking must stop if the door is held open”
SPEC
AG( (E$$doorOpen=1 & M0$$motor=1) ->
AX( (E$$SdoorOpen=1 -> M0$$Smotor=0) | AX(

(E$$doorOpen=1 -> MO$$motor=0) | AX(
(E$$doorOpen=1 -> M0$Smotor=0) | AX(
(E$$doorOpen=1 -> M0$Imotor=0) | AX(
(E$$doorOpen=1 -> M0$Smotor=0) | AX(
(E$$doorOpen=1 -> M0$Smotor=0) | AX(
(E$$doorOpen=1 -> MO$$motor=0) | AX(
MO$$motor=0)))))))))

g Griffit



Failure Mode Analysis

D Nevz\components come 1nto place

4 2 BULB_OFF

~

OnEntry {int On; On=0;}

light

" 1BULB_ON

~

OnExit {}

N

/

llight

OnEntry {On=1;}

OnExit {}

\{}

J

Figure 3: A model of the light bulb hardware component.

» Fault injection determines the effects

. to remove behavior from the model (an omission
failure) and test all properties, and

2. to modity (a value failure) behavior and test all
properties.

g Griffit



The comparison with UML-B?

Potentially carry out FMEA
/) GriEE




The negation of MDD

......
1\

L R
......

gy Griffit



Case Study I: Bridge to the Island
(64-page chapter [8])

Retroreflector

g Griffit



TABLE 1. CAR-BRIDGE REQUIREMENTS.

Req. Description
FUN-1 The system is controlling cars on a bridge connecting the mainland to an island.
ENV-1 The system is equipped with two traffic lights with two colours: green and red.
ENV-2 The traffic lights control the entrance to the bridge at both ends.
ENV-3 Cars are not supposed to pass on a red traffic light, only one a green one.
ENV-4 The system is equipped with four sensors with two states: on and off
ENV-5 '.I'he sensors are used to fietect the presence of a car entering or leaving the bridge: “on” means a car
is willing to enter the bridge or leaving it.
FUN-2a The number of cars on the bridge is limited but cannot be negative.
FUN-2b The number of cars on the island is limited but cannot be negative.
FUN-3 The bridge is one-way with the direction switched by the traffic lights.
FUN-4 The system runs indefinitely. Cars can always leave the compound, but only enter if not full.

As usual, requirements are refined

g Griffit




Correctness by construction

» Build the model incrementally
» Always (formally) verifying correctness

* Events

e ML_OQut: A car has gone out of the mainland onto
the compound of the bridge and the island.

e ML_In: A car has moved away from the island/
bridge compound onto the mainland.

* Variables
* d capacity of the 1sland (and bridge)
* n cars in compound (bridge & island)

g Griffit



4 INITIALIZING

Has_ML_out_happened && (n<d)

‘\_O_”_E ntry{ d=10; n:=0; } _

' CAR_OUT

I Has_ML_in_happened

Has ML_out ha

ppened && (n<d)

-

DECREMENTING \

OnEntry{ n :=n-1; }

Has_ML_in_happened && (0<n)

Has_ML_in_happened && (0<n)

Has_ML_out_happened && (n<d)

4 INCREMENTING )
| OnEntry{ ni=n+1:}
| OnExity — __ _____
Y Y,

I Has_ML_out_happened

| CAR_IN '

Figure 1: LLFSM model for level one of the car-bridge.

g Griffit



Verified properties

always 0<n/ n<d
d remains constant

once n = d—1, any alternation of the values of
nas_ML_Out_happened (between TRUE and
FALSE) will not change the value of ».

nas_ML_Out_happened must be set to
FALSE before the setting of
nas_ML_In_happened to TRUE causes the
value of n to decrease

under the assumption 0<d, the statement (n<d V
0<n) 1n all future states.

g Griffit



The second level

D New events:

e IL _In: A car has gone out of the bridge onto the
1sland.

e IL _Out : A car has moved off the island onto the
bridge.
» New variables

* n_b2i: the number of cars on the bridge heading towards the
1sland.

* ni : the number of cars on the i1sland.

* n_b2m : the number of cars on the bridge heading towards the
mainland.

g Griffit



The invariant

d» (n b2i==0) V (n_b2m ==0).

 That 1s, enforcing the bridge i1s one-way
(in one direction or the other).

g Griffit



Still prove deadlock free

( DECREMENTING_B2I \ \E INITIALIZING N Has_ML_out_happened && (n_b2i+n_i<d) && (0==n_b2m) 4 INCREMENTING._M2B \

OnEntry{ n_b2i:=n_b2i+1

OnEntry{ n_b2m :=n_b2m-1;}| = OnEntry{ d=10; n_b2i:=0; n_i=0; n_b2m=03}| = < >|OnEniry{n_b2i:=n_b2i+1 :
OnBxity ____________ OMExit) __ _________________| \N onexity_________
_/ Has_ML_out_happened &&\(n_b2i+n_i<d) && (0==n_b2m)
! — in_happened
|
Has_Mthpened ' Has_ML_out~ ene:

&& (0<n_b2m)

Has_IL_out_happened && (0==n_b2i) && (0<n_i) kCAR‘IN‘BRIDGE‘ZM) ( CAR_IN_BRIDGE_2!I "} Has_ML_out_happened && (n_b2i¥i_i<d) && (0==n_b2m)

( INCREMENTING_ISLAND )
[ INCREMENTNG 128 )  Has_ g ha OnEntry( n_baii=n_b2i-1:_n_i=n +1; )
OnEntry{ n_f:=n_i-1: n_b2m=n_b2m+1;} - OnExit{}
t?'n?ﬂtg __________________ Has_IL_out_happened && (0==n_b2i) && (0<n_i Has_IL_in_happened && (0<n_b2i) s T _J

Fig. 2. LLFSM model for level two of the car-bridge.

d» (n b2m>0) V ((n_b2i+ni<d) \(n_b2m==0))
V (n_b2i>0)

V ((ni >0) A (n_b2i==0)).

g Griffit



Level three

» Introducing the lights

* Variables
* ml It : The colour of the light on the mainland side.
* il [t : The colour of the light on the island side.

g Griffit



4 SETTING_GREEN A

(HOLDING_GREEN gmeout(delay)

OnEntry{ il_lt=green; ml_lt=red;}

red==il_tl

| OnExih |
(" SETTNG.RED ) o N /
OnEntry{il_t=red; } Q<n_i) &6 (0==n_b2)
OnExity timeout(delay) { HOLDING RED
(a) The mainland light.

Figure 3. Versatile model at the level of lights for the car-bridge controller.

g Griffit



(HOLDING_GREEI\D{“meOUt(delay)

4 SETTING_GREEN )

red==il_tl

4 SETTING_RED )

OnEntry{ il_lt=red; }

O >oeas -

OnEntry{ il_lt=green; ml_lt=red;}

(O<n_i) && (0==n_Db2i)

/
timeout(delay) £ HOLDING_RED>

(b) The 1sland light.

Figure 3. Versatile model at the level of lights for the car-bridge controller.

g Griffit



( DECREMENTING_B2l \ ( INITIALIZING ")__Has ML out happened && (green==mi It) ("~
OnEntry{ n_b2m :=n_b2m-1; }

OnEntry{ d=10; n_b2i:=0; n_i=0; n_b2m=0;} Has_ML_out_happened && (green==ml_lt)

INCREMENTING_M2B \
OnEntry{ n_b2i:=n_b2i+1;

S V) Has_ML_out_happened && (green==ml_|

)
I Has= in_happened

Has_ML_in_happgned && (0<n_b2m) Ve
k CAR_IN_BRIDGE_2M

(n_b2i+n_i<d) /

(n_b2j+n_i=d)

( SWICHING_IL_LT_RED

( CAR_IN_BRIDGE_2I

an'lt'y{_il:llzieg;_}_ . ! _IL_ I Has_ML >qut_happened (O:I\EA:EH;NmGI_':fI::Z_?ED
OnExt)_________ et j
¢ vy T T T T T T
0=3n_i ! Has_IL_iy_happened
) ( INCREMENTING_ISLAND w
( INCREMENTING. [2B N Has_IL_out_happ?éd && (green=il_It) Hals_IL_in_happened && (0<n_f<EnEntry{ n_b2i:=n_b2i-1: n_i=n_i+1 ;}j
OnEntry{ n_i:=n_i-1: n_b2m=n_b2m+1; } OnExit{}
OnExity \ Has_IL out happened && (green=il 1y W~~~
{

(c) The central controller

Figure 3. Versatile model at the level of lights for the car-bridge controller.

g Griffit



UML-B does not model delays

D As a consequence, to ensure that the lights
alternates, 1t forcers cars to alternate.

D Does not even notice this awkward
behaviour of the system (model).

g Griffit



Scenario where the UML-B model
fails

» Capacity 1s no more than 4 cars

» Two (2) cars to go onto the bridge

» One (1) car to go from the bridge onto the 1sland

» A car from the mainland can still go on the
bridge -

—_> —

g Griffit



Scenario where the UML-B
model fails

D If the third car reaches the island and no other
car takes the bridge

g Griffit



Scenario where the UML-B
model fails

D If the third car reaches the island and no other
car takes the bridge

D A fourth car cannot go to the 1sland!!

D Has to wait for a car out, and there is still
capacity .

—_> —_

g Griffit



4 SHOWING_GREEN )
OnEntry{ ml_It=green; il_tl=red;}

0
N U

red==ml_|It /
(n_b2i + n_i <d) && (0==n_b2m)

YV
SHOWING_RED )
OnEntry{ ml_It=red; }
OnExity |
g
(a) The mainland light.

Fig4. Lights models with no delay as [8, Sec. 2.6.1 to 2.6.7].

g Griffit




4 SHOWING_GREEN A
OnEntry{ il_lt=green; ml_It=red;}

G /
red=\ljll_t| (O<DZI) && (0==n_b2i)

4 SHOWING_RED A
OnEntry{ il_lt=red; }

OnExity <@

(b) The 1sland light.
Fig4. Lights models with no delay as [8, Sec. 2.6.1 to 2.6.7].

g Griffit




4 SHOWING_GREEN )

OnEntry{ ml_Ilt=green;
il_tl=red;
ml_pass=FALSE; }

. o
red==ml It

(n_b2i + n_i <d) &&
\V (0==n_b2m) && il_pas:

4 SHOWING_RED )
OnEntry{ ml_lt=red; }

{
(a) The mainland light. \~ /

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

g Griffit



4 SHOWING_GREEN )

OnEntry{ il_lt=green;
ml_It=red;
il_pass=FALSE; }

red==il_tl

(O<n_i) &&|(0==n_Db2i)
\/ && ml_pass

4 SHOWING_RED )
OnEntry{ il_lt=red; }

(b) The island light. ! )

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

g Griffit



4 INCREMENTING_MZB\

OnEntry{
n_b2i:=n_b2i+1:
ml_pass=TRUE; }

OnExity
\U Y,
e R

INCREMENTING_I2B

OnEntry{ n_i:=n_i-1:
n_b2m=n_b2m+1;
il_pass=TRUE;}

(c) The replaced states. N\, J

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

g Griffit



Event-B considerations match
Logic-Labelled FMS

considerations
D “make clearer the separation between the
software controller and the physical
environment” |8, Page 89].

D “a closed model corresponding to the
complete mathematical simulation of the
pair formed by the software controller and
the environment” [8, Page 89].

g Griffit



[ oN )

@nEntry{ has_ML_out_happened:TRUEj

lis_car_pushing_M2B
is_car_pushing_M2B

OFF )

kOnEntry{ has_ML_out_happened:FALSEﬂ

(a)Mainland to bridge

[ oN ]

kOnEntry{ has_lL_out_happened:TRUE;U

lis_car_pushing_12B
'5-Car_pyshing._ is_car_pushing_I2B

OFF )

kOnEntry{ has_lL_out_happened:FALSE;}J

(c) Bridge to mainland

4 on

S

@n Entry{ has_ML_in_happened:TRUE;}j

lis_car hi B2M
. 'S_car_pushing_ is_car_pu

shing_B2M

2 OFF

S

OnEntry{ has_ML_in_happened:FALSE;}J

(b)Island to bridge

4 on

S

kOnEntry{ has_lL_out_happened:TRUE;U

lis_car_pyshing_I2B
~Carp 9- is_car_pu

shing_12B

OFF

\

kOnEntry{ has_lL_out_happened:FALSE;}J

(d)Bridge to 1sland

Fig. 6 The 4 sensor behaviour models.

g Griffit



SOFTWARE CONTROLLER
INTEGER n_b2m, n_i, n_b2M;
BOOL mil_tl, il_tl;

has_ML_out_happened

ENVIRONMNET
n_car_in_island,
n_cars_bridge_2_island
n_cars_bridge_2_mainland

SENSORS
MAINLAN_2 BRIDGE

is_car_pushing_M2B

mi_tl

ISLAND_2 BRIDGE
has_IL_out| happened is_car_pushing_I2B

BRIDGE_2_ISLAND
is_car_pushing_B2I

has_IL_in|happened

has_ML_in| happened BRIDGE_2_MAINLAND
is_car_pushing_B2M

| LIGHTS
| CAR_GENERATOR

— A\

Figure 7. The communication channels between the environment
and the software controller in Fig 3.

g Griffit



TABLE II. THE TYPES OF VARIABLES USED.

Input channels

has_MIL_Out_happened, has_ML_In_happened,
has_IL_Out_happened, has_IL_Out_happened

Controller n_i,n_b2i,n_b2m
Output channels | ml_t1,il_tl
Environments n_car_in_island, n_car_bridge_2_island,

n_car_bridge_2_mainland

g Griffit




UML-B requirements

D Event-B uses a model of control over
environment variables
* (making sure the environment plays fair).

» Event-B, a driver will never run a red light, for
example.

» This does not happen with LLFSMs

* non-deterministic aspect that is captured in the
Kripke structure in NuSMV, capable of
reacting to the environment changing the
corresponding external variables at any time 1n

g Griffit

any way.



The powered-window in the car

» Driver and passenger can
control a passenger window

D Obstacles when going up halt
the movement.

D Short push moves the window
all the way (down or up)

» Long push regulates the final
position (when the long push
terminates)

g Griffit



TABLE IIL Car Window_ PWC—-OD REQUIREMENTS.

Req. Description

R1 Both driver and passenger can control glass door movements using their own up/down switches.
R 2 When the glass is at the top position then the up command will not have any effect.
R3 When the glass is at the bottom position then the down command will not have any effect.

A driver command has higher priority over a passenger command; when both up and down switches
R 4 are pressed (by driver or passenger) at the same time, with contradictory signals, the driver’s command
is the one the system responds to.

When the window is moving up, and an obstacle is detected, the glass moves down for a prescribed
RS5 duration, or until the lower position is reached, whichever happens first. During this time, commands
from the driver or the passenger are ignored.

If an up button is pressed and released before a threshold time limit, then it is interpreted as an auto-up
R 6 command, and the window rolls up to its top limit; however, if the button is pressed for more than

the threshold value, then the glass moves up step by step till the button is released or the top limit is
reached; similar behaviour occurs when the down button is pressed.

g Griffit



IpassangerUpPressed && timeout(min_delay)

UpP d
(" SIGNALING_UP PRESSED Yimeout(delay) WAITING assangeruprresse

passangerUpPressed OnEntry{

4 IDLE )

OnEntry{ extern passangerShortUp;
extern passangerShortDown; Ipassanger
extern passangerLonUp;

extern passangerLongDown;

(" SIGNALING LONG UP

OnEntry{
passangerShortUp=FALSE;
passangerLongUp=TRUE;}

KpassangerShortUp:TRUE;})

IpassangefUpPressed

extern passangerUpPressed; imeout(min_delay] wWAITING_MIN IpassangerDownPressed

extern passangerDownPressed; / |

passangerShortUp=FALSE; SIGNALING LONG DOWN

passangerShortDown=FALSE; IpassangerDownPressed ( — — \

passangerLonUp=FALSE; OnEntry{ '

assangerLonDown=FALSE;} Y, passangerShortDown=FLASE;
e passangerLongDown=TRUE;
SIGNALING_DOWN_PRESSE[N

passangerQownPressed OnEntry{ passangerDownPressed

passangerShortDown=TRUE;}

N\

IpassangerDownPressed && timeout(min_delay)

WAITING

Figure 8. The LLFSM for the button of the passenger.
) SR




shallStopDownManual

atBottom

/

4 NOT_MOVING

timeout(delay_4_obstacle)

\

WAITING )

MOVING_DOWN_MANUAL

obstacleFound

atBottom

OnEntry{

extern obstacleFound,;
extern atTop;

extern atBottom;

extern passangerShortUp;

extern passangerShortDown;

extern passangerLonUp;
extern passangerLongDown;
extern motor;

motor OFF;

\ Y,

MOVING_DOWN ) shallDownUpManual

OnEntry{ motor=DOWN;

shallGoDown._

obstacleFound

J

shallGoUp shallGloDown

shallGoUp

MOVING_UP

shallGoUpManual

OnEntry{ motor=UP;

shallStopUpManual

J

(MOVING_U P_MANUAL
N

Figure 10. The LLFSM for the motor of the window.
) G



name { SHALLGOUP}.

input{passangerLongUp}. input{passangerShortUp}.

input{driverLongUp}.
input{driverLongDown}.
input{obstacleFound}.

input{atTop}.

UPO: {} => ~shallGoUp.

UPl: passangerLongUp => shallGoUp.
UP2: passangerShortUp => shallGoUp.
UP3: driverLongUp => shallGoUp.
UP4: driverShortUp => shallGoUp.
UP5: driverLongDown => ~shallGoUp.
UP6: driverShortDown => ~shallGoUp.
UP7: obstacleFound => ~shallGoUp.
UP8: atTop => ~shallGoUp.

output{b shallGoUp, "shallGoUp"}.

input{driverShortUp}.

UP1>UPO.
UP2>UPO.
UP3>UPO.
UP4>UPO.

UP5>UP1.
UP6>UP1.
UP7>UPl.
UP8>UP1.

input{driverShortDown}.

UP5>UP2.
UP6>UP2.
UP7>UP2.
UP8>UP2.

UP7>UP4.
UP8>UP4.

UP7>UP3.
UP8>UP3.

Figure 9. DPL coding for the predicate Shal1lGoUp.

g Griffit



name { SHALLGODOWN} .

input{passangerLongDown}. input{passangerShortDown}.
input{driverLongUp}. input{driverShortUp}.
input{driverLongDown}. input{driverShortDown}.

input{obstacleFound}.
input{atBottom}.

DNO: {} => ~shallGoDown.

DN1:passangerLongDown => shallGoDown. DN1>DNO.
DN2:passangerShortDown => shallGoDown. DN2>DNO.

DN3:driverLongDown => shallGoDown. DN3>DNO.

DN4 :driverShortDown => shallGoDown. DN4>DNO.

DN5:driverLongUp => ~shallGoDown. DN5> DN1. DN5>DN2.
DN6:driverShortUp => ~shallGoDown. DN6> DN1. DN6>DN2.
DN7:o0bstacleFound => shallGoDown. DN7> DN6. DN7>DN5. DN7>DNO.
DN8:atBottom => ~shallGoDown. DN8> DN7. DN8>DN4. DN8>DN3.

DN8>DN2. DN8>DN1.
output{b shallGoDown, "shallGoDown"}..

Figure 11. DPL coding for the predicate ShallGoDown.
) G




name { SHALLGOUPMANUAL}.
input{passangerLongUp}. input{driverLongUp}.

MUPO: {} => ~shallGoUpManual.

MUP1l: passangerLongUp => shallGoUpManual. MUP1>MUPO.
MUP2: driverLongUp => shallGoUpManual. MUP2>MUPO .

output{b shallGoUpManual, "shallGoUpManual"}.

Figure 12. DPL coding for the predicate shallGoUpManual.

g Griffit




name {SHALLSTOPUPMANUAL}.
input{passangerLongUp}. input{driverLongDown}.
input{driverShortDown}. input{driverLongUp}. input{atTop}.

SUPO: {} => shallStopUpManual.

SUP1l: passangerLongUp => ~shallStopUpManual. SUP1> SUPO.

SUP2:driverLongDown => shallStopUpManual. SUP2> SUP1.
SUP3:driverShortDown => shallStopUpManual. SUP3> SUP1.
SUP4:driverLongUp => ~shallStopUpManual. SUP4> SUP2. SUP4>SUP3.
SUP5: atTop => shallStopUpManual. SUP5>SUP4.

output{b shallStopUpManual, "shallStopUpManual"}.

Figure 13. DPL coding for the predicate shallStopUpManual.

g Griffit




shallGoUp=
( driverLongUp

| | driverShortUp

| | passangerLongUp || passangerShortUp)
&& !
( atTop

| | obstacleFound

| | driverLongDown || driverShortDown).

Figure 14. Simple-C expression for the logic theory in Fig. 9.

g Griffit



SPEC AG (

(passangerShortUp = 1 -> ((passangerShortDown = 0
& passangerLongDown = 0)
& passangerLongUp = 0)) | pc = MOSORO)

Figure 15. CTL formula that verifies that only
passangerShortUp 1s TRUE once some computation has
happened

g Griffit



driverLongUp N
Driver driverLongDown —
driverShortUp
BUtton COﬂthl driverShortDown -
—1 Motor
§O]
D passengerLongUp N Control
g)) Passenger passengerlongbDown 3
o |0 o passengerShortUp
S 191 0 Button Control —>
DC.; g)) 0 o passengerShortDown -
0N
[0) ) Y W A
5lal 8o CONTROLLER 5
'l JAT nl O I
a1l <l M 9
(:]>) :a CB) %: obstacleFound
— | O oy =
gl P gl M
o |- ol © atTop
“ o] O atBottom
§O) cl S
ol &
ol @ Y
ol g Passenger
Q. Butt Obstacle Top Bottom
n
uto Sensor Sensor Sensor
Motor
Driver ENVIRONMENT
Button

Figure 16. Communication channels of the car-window controller
and 1ts environment; the closed world model.

g Griffit




LTLSPEC
G ( ( obstacleFound=1 & atTop=0 & driverLongUp=1 & motor=Up ) ->

X ( obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |
X ( obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |
X ( obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |
X ( obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |
X ( obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down

)

Figure 17. Structure of the LTL formula that encodes that and
obstacle found will cause the motor to switch direction to going
down.

g Griffit



Comparison with Event-B (and
its tool UML-B)

» Event-B results in 30-Page Event-B
specification [18]

» It is incomprehensible to the average
learned software engineer

D The specification 1s longer than the actual
code.

g Griffit



Summary

» Logic-labelled finite-state machines are very
effective models of behaviour

» Significantly well established event-driven version

 But the logic-labelled reduces many complexities
without loosing expressive power

» We can simulate behaviours (detect faults)
» We can formally verify models

» We can perform fault injection and FMEA
» Complete Model-Driven Development

g Griffit



g Griffit



