
1

Vlad Estivill-Castro

Correctness by Construction with

Logic-Labeled Finite-State Machines
– Comparison with Event-B

IIIS © V. Estivill-Castro 2

Thanks for your interest

 Vlad Estivill-Castro

School of Information and Communication Technology
Institute for Intelligent and Integrated Systems

Griffith University
 Australia

Rene Hexel
School of Information and Communication Technology

Institute for Intelligent and Integrated Systems
Griffith University

 Australia

IIIS

Outline
◗  Motivation

•  Model-Driven Development (MDD) vs formal
methods

•  Event-B
•  Logic-labelled Finite State Machines

◗  Case Studies
•  Bridge – controller
•  Car-window Controller

◗  Conclusions

© V. Estivill-Castro 3

IIIS

Model-Driven Development
(MDD)
◗  Widely successful approach to developing

software
◗  Ensures traceability, validation against

requirements, and platform independence
◗  Tools and techniques are resulting in faster

and simpler (easier to maintain) products
and applications than traditional language
parser/compiler or interpreter approaches

© V. Estivill-Castro 4

IIIS

MDD illustration (static modelling)

◗  Data/Class Modelling tools that generate code
•  (ER diagrams to SQL CREATE)
•  (Class Diagrams to Java class templates)

© V. Estivill-Castro 5

[4][5]:The two most used
(100% of the time) UML
constructs are
•  class diagrams
•  state-charts

IIIS

What is Event-B?
◗  The B method is method of

software development based
on B,
•  a tool-supported formal method

based around an abstract
machine notation, used in the
development of computer
software.

© V. Estivill-Castro 6

IIIS

◗  Widely used model of behavior in
embedded systems

•  QP (Samek, 2008), Bot- Studio (Michel, 2004) StateWORKS (Wagner et al.,
2006) and MathWorks ⃝R StateFlow. The UML form of FSMs derives from OMT
(Rumbaugh et al., 1991, Chapter 5), and the MDD initiatives of Executable UML
(Mellor and Balcer, 2002).

◗  The original Subsumption Architecture was implemented using the

Subsumption Language
◗  It was based on finite state machines (FSMs) augmented with timers

(AFSMs)
◗  AFSMs were implemented in Lisp

Finite-State Machines (FSM)

(c) Vlad Estivill-Castro 7

IIIS

Event-driven FSMs

Most common approach
•  System is in a state

•  waiting
•  does not change what is

–  doing/happening

•  until event arrives

•  Events change the state of
the system

8

Attack

Defend

ga
in

po

ss
es

si
on

 lose
possession

(c) Vlad Estivill-Castro

IIIS

Logic-labeled FSMs
◗  A second view of time (since Harel’s seminal paper)

•  Machines are not waiting in the state for events
•  The machines drive, execute
•  The transitions are expressions in a logic

•  or queries to an expert system

(c) Vlad Estivill-Castro 9

attack for a
bit

is the game over?

I am injured?

did the team lost possession?
defend

Lay
down

Celebrate

Take
cover

IIIS

% BallConditions.d!
!
name{BALLCONDITIONS}.!
!
input{badProportionXY}.!
input{badProportionYX}.!
input{badDensityVsDensityTolerance}.!
!
BC0: {} => is_it_a_ball.!
BC1: badProportionXY => ~is_it_a_ball. BC1 > BC0.!
BC2: badProportionYX => ~is_it_a_ball. BC2 > BC0.!
BC3: badDensityVsDensityTolerance => ~is_it_a_ball. BC3 > BC0.!
!
output{b is_it_a_ball, "is_it_a_ball"}.!

Example from robotic soccer
ORANGE_BLOB_FOUND

OnEntry { extern blobSizeX; extern blobSizeY;
 extern blobArea; extern blobNumPixels;
 toleranceRatio = 2; densityTolerance = 3;
 badProportionXY = blobSizeX/blobSizeY > toleranceRatio;
 badProportionYX = blobSizeY/blobSizeX > toleranceRation;
 badDensityVsDensityTolerance =
 blobArea / blobNumPixels > densityTolerance;
}
OnExit {}
{}

BALL_FOUND

is_it_a_ball

(c) Vlad Estivill-Castro 10

Logic labeled FSMs provide deliverative control

IIIS

Arrangements of LLFSM
◗  Enable MDD
◗  Provide sequential execution
◗  Avoid concurrency challenges
◗  Can be formally verified
◗  Can be simulated (validated)
◗  So far, compared directly with

•  Behaviour Trees, Petri nets, Executable UML

◗  Can perform FMEA
◗  BUT, how do they compare with UML-B?

© V. Estivill-Castro 11

IIIS

One Minute Microwave
◗  Widely discussed in the

literature of software
engineering

◗  Analogous to the X-Ray
machine
•  Therac-25 radiation machine

that caused harm to patients
◗  Important SAFETY feature

•  OPENING THE DOOR
SHALL STOP THE
COOKING

(c) Vlad Estivill-Castro 12

IIIS

Requirements

(c) Vlad Estivill-Castro 13

Requirements Description

R1 There is a single control button available for the use of the oven. If the
oven is closed and you push the button, the oven will start cooking (that
is, energize the power-tube) for one minute

R2 If the button is pushed while the oven is cooking, it will cause the oven
to cook for an extra minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the oven
will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and
then a beeper emits a warning beep to indicate that the cooking has
finished.

and does not clear the timer
and stops the timer

IIIS

Logic-labeled Finite-state
machines with DPL
◗  Step 1: Consider writing the script of music for an orchestra. Write

individual scripts and place together all actuators that behave with the
same actions for the same cues

◗  Example: The control of the tube (energizing), the fan and the spinning
plate

(c) Vlad Estivill-Castro 14

IIIS

Step 2: Describe the
conditions that result in the
need to change state

(c) Vlad Estivill-Castro 15

% MicrowaveCook.d

name{MicrowaveCook}.

input{timeLeft}.
input{doorOpen}.

C0: {} => ~cook.
C1: timeLeft => cook. C1 > C0.
C2: doorOpen => ~cook. C2 > C1.

output{b cook, "cook"}.

Action:
Posting a message
to the whiteboard

IIIS

One of the LLFSMs

(c) Vlad Estivill-Castro 16

% MicrowaveCook.d

name{MicrowaveCook}.

input{timeLeft}.
input{doorOpen}.

C0: {} => ~cook.
C1: timeLeft => cook. C1 > C0.
C2: doorOpen => ~cook. C2 > C1.

output{b cook, "cook"}.

IIIS

Step 1 (again): Analyze another
actuator
◗  Illustration: The light

(c) Vlad Estivill-Castro 17

IIIS

Step 2 (again): Describe the
conditions that result in the
need to change state

(c) Vlad Estivill-Castro 18

% MicrowaveLight.d

name{MicrowaveLight}.

input{timeLeft}.
input{doorOpen}.

L0: {} => ~lightOn.
L1: timeLeft => lightOn. L1 > L0.
L2: doorOpen => lightOn. L2 > L0.

output{b lightOn, "lightOn"}.

IIIS

Step 1 (again): Analyze another
actuator

(c) Vlad Estivill-Castro 19

•  Illustration: The button

IIIS

Step 2 (again): Describe the
conditions that result in the
need to change state

(c) Vlad Estivill-Castro 20

% MicrowaveButton.d

name{MicrowaveButton}.

input{doorOpen}.
input{buttonPushed}.

CB0: {} => ~add.
CB1: buttonPushed => add. CB1 > CB0.
CB2: doorOpen => ~add. CB2 > CB1.

output{b add, "add"}.

IIIS

Step 1 (again): Analyze another
actuator

(c) Vlad Estivill-Castro 21

•  Illustration: The bell

IIIS

Step 2 (again): Describe the
conditions that result in the
need to change state
No need for a logic: timeLeft

 - posted by another module
 - does not require a proof

(c) Vlad Estivill-Castro 22

IIIS © Vlad Estivill-Castro 23

Step 1 (again): Analyze
another actuator
◗  Illustration: The timer

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry
{timeLeft=0<currentTime;}
OnExit {}
{}

TRUE

TRUE

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

IIIS

Embedded systems are
performing several things

◗  The models is made of several finite state-
machines
•  Behavior-based control

◗  With a rich language of logic, the modeling
aspect is decomposed
•  the action /reaction part of the system

•  the states and transitions of the finite-state machine

•  the declarative knowledge of the world
•  the logic system

(c) Vlad Estivill-Castro 24

IIIS

The Microwave example
--- We can translate DPL to
propositions

NOT_COOKING
OnEntry:
motion:=false

COOKING
OnEntry:
motion:=true;

! (!doorOpen && timeLeft)

!doorOpen && timeLeft

© Vlad Estivill-Castro 25

LIGHT_OFF
OnEntry:
l ights:=false

LIGHT_ON
OnEntry:
l ights:=true;

! (doorOpen || timeLeft)

doorOpen || timeLeft

IIIS

The complete arrangement

(c) Vlad Estivill-Castro 26

2 OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

1 ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

1 RINGING
OnEntry {sound=1;}
OnExit {}
{}

!timeLeft

2 NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

1 COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft

2 NOT_SHINE_LIGHT
OnEntry {int light; light=0;}
OnExit {}
{}

1 SHINE_LIGHT
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry
{timeLeft=0<currentTime;}
OnExit {}
{}

true

true

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

Light Motor

Bell

Timer

Execute in predefined
schedule ti ringlets

of FSM Mi

IIIS (c) Vlad Estivill-Castro 27

Demo video (java)
◗  http://www.youtube.com/watch?

v=t4ueI1o67Xk&feature=relmfu

IIIS

SIMULATION

(c) Vlad Estivill-Castro 28

2 OFF
OnEntry {int sound; sound=0;}
OnExit {}
{}

1 ARMED
OnEntry {}
OnExit {}
{}

timeLeft

timeout(2000000)

1 RINGING
OnEntry {sound=1;}
OnExit {}
{}

!timeLeft

2 NOT_COOKING
OnEntry {int motor; motor=0;}
OnExit {}
{}

1 COOKING
OnEntry {motor=1;}
OnExit {}
{}

!doorOpen && timeleft

doorOpen || ! timeLeft

2 NOT_SHINE_LIGHT
OnEntry {int light; light=0;}
OnExit {}
{}

1 SHINE_LIGHT
OnEntry {light=1;}
OnExit {}
{}

doorOpen || timeLeft

!doorOpen && ! timeLeft

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry
{timeLeft=0<currentTime;}
OnExit {}
{}

true

true

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

Light

Motor

Bell

Timer

CONTROLLER

Qt GUI

HARDWARE

IIIS © V. Estivill-Castro 29

SIMULATION demo video (C++)

IIIS © Vlad Estivill-Castro 30

http://www.youtube.com/watch?v=Dm3SP3q9_VE

© V. Estivill-Castro 30

IIIS © V. Estivill-Castro 31

Demo video (C++)

IIIS

Model Checking and Validation
◗  Properties

•  Property 1: Necessarily, the oven stops (after several
steps, i.e. a small, finite number of transitions in the
Kripke structure) after the door opens.”

•  Property-2: “It is necessary to pass through a state in
which the door is closed to reach a state in which the
motor is working and the machine has started.”

•  Property-3: “Necessarily, the oven stops(after several
steps, i.e. again, a small, finite number of transitions in
the Kripke structure) after the timer has expired.”

•  Property-4: “Cooking may go on for ever (e.g. if the
user repeatedly keeps pressing the add button while the
timer is still running).”

32 (c) Vlad Estivill-Castro

IIIS

Formal description of the
Property in LTL

◗  Using NUSMV’s code
•  “the cooking must stop if the door is held open”

SPEC
AG((E$$doorOpen=1 & M0$$motor=1) ->
 AX((E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 (E$$doorOpen=1 -> M0$$motor=0) | AX(
 M0$$motor=0)))))))))

33 (c) Vlad Estivill-Castro

IIIS

Failure Mode Analysis

◗  New components come into place

◗  Fault injection determines the effects
1.  to remove behavior from the model (an omission

failure) and test all properties, and
2.  to modify (a value failure) behavior and test all

properties.

34

2 BULB_OFF
OnEntry {int On; On=0;}
OnExit {}
{}

1 BULB_ON
OnEntry {On=1;}
OnExit {}
{}

l ight

!l ight

Figure 3: A model of the light bulb hardware component.

bulb being poorly connected, or busted. These ad-
ditional components enable verification of some very
important initial and shut-down conditions of the sys-
tem. One can observe the behaviour of the software, if
it starts running with error states of other components.
For instance, in the microwave example, it could be
starting with a faulty door sensor always reporting a
doorOpen condition.

The point we want to make here is that these ad-
ditional models that represent the hardware as well
as the software, while very effective for FMEA table
completion, result in a much larger Kripke structure
for the model-checker. Simply put, now we have a
larger set of components that we are formally veri-
fying. More importantly, for each component that is
added, the total number of possible states (of the hard-
ware and software in simulation) gets multiplied by
the number of states of the additional component.

A very important observation is that, typically,
such hardware components only depend on a very
small software module – let’s call it the driver soft-
ware (in the above example, that role is played by the
state machine in Fig. 1b) – and they do not depend
on the many other components or software modules.
Thus, one shall identify independent sub-models, for
the purposes of model checking, whose state-space
would be much smaller. The end result is that the
model-checking that is repeated for every entry of the
FMEA table would be, in fact, much faster, having
an overall dramatic improvement in verification times
and the completion of the FMEA table.

3 INDEPENDENT SUB-MODEL
IDENTIFICATION

We propose a method to identify dependencies be-
tween components. We use the semantics and sequen-
tial scheduling (Estivill-Castro et al., 2012b; Estivill-
Castro et al., 2012a) proposed for logic-based finite-
state machines (FSMs). These FSMs consist of a
set S of states and a transition table T : S ⇥ E ! S
. There is an initial state s0 2 S, and for each state,
the transitions leading out of the state are ordered in
a sequence. Transitions are labeled by an expression
e 2 E, and these expressions are evaluated in deter-

ministic order (and time) by an expert system (the ex-
amples in the literature use Decisive Plausible Logic
(DPL) (Estivill-Castro et al., 2012b; Estivill-Castro
et al., 2012a), but the expressions can also be Boolean
expressions of an imperative programming language
such as C, C++, or Java (or any decidable logic, that
provides an answer in predictable time). The point is
that execution of an vector of these machines (such as
the ones in Fig. 1 in the previous section) is sequenced
deterministically by a pre-defined schedule. Each ma-
chine in the vector receives a pre-defined number of
ringlets it executes before execution passes to the next
machine in the vector. The execution token passes
back to the first machine after the last machine com-
pletes its allocated ringlets. A ringlet consist of eval-
uating the OnEntry section of the current state (if it
is the first time control arrives to this state from an-
other state in this machine), followed by evaluation of
the expressions in the list of transitions until an ex-
pression evaluates to true. In this case, the OnExit
section is evaluated and the ringlet concludes. If the
list of transitions is exhausted without any expres-
sion becoming true; then the Internal section of the
state completes and the ringlets also conclude. Thus a
ringlet is the complete assessment of the current state.

The shared variables between the different mod-
ules (FSMs) are called external variables and are man-
aged on a repository architecture named the white-
board (Hayes-Roth, 1988). When the execution token
arrives at a machine, it makes a local copy of any ex-
ternal variables it will use in the current state. We re-
fer to this as the READ footprint on the whiteboard.
Before the execution token of an FSMs is handed
back, the machine copies to the whiteboard any ex-
ternal variables it has modified locally. We refer to
this as the WRITE footprint of the state. This ensures
there is never a race condition between the FSMs that
are running concurrently under the predefined sched-
ule (and thus, there is no need for further mechanisms
to protect shared variables or synchronise FSMs).

For a FSM, the union of all the READ footprints
of its states is called the REQUIRES set of the FSM.
Similarly, the union of all the WRITE footprints of
its states is called the PROVIDES set. Note that
it has been shown that the REQUIRES set and the
PROVIDES set of an FSM can be computed from the
static analysis of the FSM description (Estivill-Castro
and Hexel, 2011).

We can compute a dependency (impact) graph be-
tween the FSMs in a vector, given the REQUIRES
set and the PROVIDES set of the FSMs in that vec-
tor. That is, we can find the dependency graph of the
modules that constitute the software. There, nodes
of the graph are the modules (the FSMs), while there

(c) Vlad Estivill-Castro

IIIS

The comparison with UML-B?

© V. Estivill-Castro 35

Note that the models we are going to construct will
not just describe the control part of our intended

system, they will also contain a certain
representation of the environment within which
the system we build is supposed to behave. In fact,

we shall quite often essentially construct closed
models, which are able to exhibit the actions and

reactions taking place between a certain
environment and a corresponding, possibly

distributed, controller [8]

Potentially carry out FMEA

IIIS

The negation of MDD

© V. Estivill-Castro 36

“In no way is the model of a program, the pro-
gram itself. But the model of a program and
more generally of a complex computer system,
although not executable, allows us to clearly
identify the properties of the future system and
to prove that they will be present in it.” [8,
Page 13].
“Note again that, as with blueprints, the basis
is lacking: our model will thus not in general
be executable” [8, Page 17].

IIIS

Case Study I: Bridge to the Island
(64-page chapter [8])

© V. Estivill-Castro 37

IIIS © V. Estivill-Castro 38

As usual, requirements are refined

IIIS

Correctness by construction
◗  Build the model incrementally
◗  Always (formally) verifying correctness

•  Events
• ML_Out: A car has gone out of the mainland onto

the compound of the bridge and the island.
• ML_In : A car has moved away from the island/

bridge compound onto the mainland.

•  Variables
•  d capacity of the island (and bridge)
•  n cars in compound (bridge & island)

© V. Estivill-Castro 39

IIIS © V. Estivill-Castro 40

Figure 1: LLFSM model for level one of the car-bridge.

INCREMENTING
OnEntry{ n:=n+1: }
OnExit{}
{}

DECREMENTING
OnEntry{ n :=n-1; }
OnExit{}
{}

Has_ML_in_happened && (0<n)

INITIALIZING
OnEntry{ d=10; n:=0; }
OnExit{}
{}

Has_ML_out_happened && (n<d)

CAR_IN

CAR_OUT

! Has_ML_out_happened

Has_ML_out_happened && (n<d)

Has_ML_out_happened && (n<d)

Has_ML_in_happened && (0<n)! Has_ML_in_happened

IIIS

Verified properties
◗  always 0≤ n� n< d
◗  d remains constant
◗  once n = d−1, any alternation of the values of

has_ML_Out_happened (between TRUE and
FALSE) will not change the value of n.

◗  has_ML_Out_happened must be set to
FALSE before the setting of
has_ML_In_happened to TRUE causes the
value of n to decrease

◗  under the assumption 0<d, the statement (n<d �
0≤ n) in all future states.

◗ 
© V. Estivill-Castro 41

IIIS

The second level
◗  New events:

•  IL_In : A car has gone out of the bridge onto the
island.

•  IL_Out : A car has moved off the island onto the
bridge.

◗  New variables
•  n_b2i : the number of cars on the bridge heading towards the

island.
•  ni : the number of cars on the island.
•  n_b2m : the number of cars on the bridge heading towards the

mainland.

© V. Estivill-Castro 42

IIIS

The invariant

◗  (n_b2i == 0) � (n_b2m == 0).
•  That is, enforcing the bridge is one-way

(in one direction or the other).

© V. Estivill-Castro 43

IIIS

Still prove deadlock free

◗  (n_b2m>0) � ((n_b2i+ni<d)�(n_b2m==0))
� (n_b2i>0)

 � ((ni >0)�(n_b2i==0)).

© V. Estivill-Castro 44

Fig. 2. LLFSM model for level two of the car-bridge.

INCREMENTING_M2B
OnEntry{ n_b2i:=n_b2i+1: }
OnExit{}
{}

DECREMENTING_B2I
OnEntry{ n_b2m :=n_b2m-1; }
OnExit{}
{}

INITIALIZING
OnEntry{ d=10; n_b2i:=0; n_i=0; n_b2m=0;}
OnExit{}
{}

Has_ML_out_happened && (n_b2i+n_i<d) && (0==n_b2m)

CAR_IN_BRIDGE_2ICAR_IN_BRIDGE_2M

! Has_ML_out_happened

Has_ML_out_happened && (n_b2i+n_i<d) && (0==n_b2m)

Has_ML_out_happened && (n_b2i+n_i<d) && (0==n_b2m)
Has_ML_in_happened && (0<n_b2m)

! Has_ML_in_happened

INCREMENTING_I2B
OnEntry{ n_i:=n_i-1: n_b2m=n_b2m+1; }
OnExit{}
{}

Has_IL_out_happened && (0==n_b2i) && (0<n_i)

INCREMENTING_ISLAND
OnEntry{ n_b2i:=n_b2i-1: n_i=n_i+1; }
OnExit{}
{}Has_IL_in_happened && (0<n_b2i)

! Has_IL_in_happened
! Has_IL_out_happened

Has_IL_out_happened && (0==n_b2i) && (0<n_i)

IIIS

Level three
◗  Introducing the lights

•  Variables
•  ml_lt : The colour of the light on the mainland side.
•  il_lt : The colour of the light on the island side.

© V. Estivill-Castro 45

IIIS © V. Estivill-Castro 46

Figure 3. Versatile model at the level of lights for the car-bridge controller.

(a) The mainland light.

SETTING_GREEN
OnEntry{ il_lt=green; ml_lt=red;}
OnExit{}
{}

SETTING_RED
OnEntry{ il_lt=red; }
OnExit{}
{}

(0<n_i) && (0==n_b2i)

red==il_t l

HOLDING_RED

HOLDING_GREEN

timeout(delay)

timeout(delay)

IIIS © V. Estivill-Castro 47

Figure 3. Versatile model at the level of lights for the car-bridge controller.

(b) The island light.

SETTING_GREEN
OnEntry{ il_lt=green; ml_lt=red;}
OnExit{}
{}

SETTING_RED
OnEntry{ il_lt=red; }
OnExit{}
{}

(0<n_i) && (0==n_b2i)

red==il_t l

HOLDING_RED

HOLDING_GREEN

timeout(delay)

timeout(delay)

IIIS © V. Estivill-Castro 48

Figure 3. Versatile model at the level of lights for the car-bridge controller.

(c) The central controller

INCREMENTING_M2B
OnEntry{ n_b2i:=n_b2i+1;}
OnExit{}
{}

DECREMENTING_B2I
OnEntry{ n_b2m :=n_b2m-1; }
OnExit{}
{}

INITIALIZING
OnEntry{ d=10; n_b2i:=0; n_i=0; n_b2m=0;}
OnExit{}
{}

Has_ML_out_happened && (green==ml_lt)

CAR_IN_BRIDGE_2ICAR_IN_BRIDGE_2M

! Has_ML_out_happened

Has_ML_in_happened && (0<n_b2m)

! Has_ML_in_happened

INCREMENTING_I2B
OnEntry{ n_i:=n_i-1: n_b2m=n_b2m+1; }
OnExit{}
{}

Has_IL_out_happened && (green=il_lt)

INCREMENTING_ISLAND
OnEntry{ n_b2i:=n_b2i-1: n_i=n_i+1;}
OnExit{}
{}

Has_IL_in_happened && (0<n_b2i)

! Has_IL_in_happened

! Has_IL_out_happened SWICHING_ML_LT_RED
OnEntry{ ml_lt=red; }
OnExit{}
{}

 (n_b2i+n_i=d)

DONE

 (n_b2i+n_i<d)

Has_ML_out_happened && (green==ml_lt)

SWICHING_IL_LT_RED
OnEntry{ il_lt=red; }
OnExit{}
{} DONE

0==n_i 0<n_i

Has_ML_out_happened && (green==ml_lt)

Has_IL_out_happened && (green=il_lt)

IIIS

UML-B does not model delays
◗  As a consequence, to ensure that the lights

alternates, it forcers cars to alternate.
◗  Does not even notice this awkward

behaviour of the system (model).

© V. Estivill-Castro 49

IIIS

Scenario where the UML-B model
fails
◗  Capacity is no more than 4 cars
◗  Two (2) cars to go onto the bridge
◗  One (1) car to go from the bridge onto the island
◗  A car from the mainland can still go on the

bridge

© V. Estivill-Castro 50

IIIS

Scenario where the UML-B
model fails
◗  If the third car reaches the island and no other

car takes the bridge

© V. Estivill-Castro 51

IIIS

Scenario where the UML-B
model fails
◗  If the third car reaches the island and no other

car takes the bridge
◗  A fourth car cannot go to the island!!
◗  Has to wait for a car out, and there is still

capacity

© V. Estivill-Castro 52

IIIS © V. Estivill-Castro 53

Fig4. Lights models with no delay as [8, Sec. 2.6.1 to 2.6.7].

(a) The mainland light.

SHOWING_GREEN
OnEntry{ ml_lt=green; il_tl=red;}
OnExit{}
{}

SHOWING_RED
OnEntry{ ml_lt=red; }
OnExit{}
{}

(n_b2i + n_i < d) && (0==n_b2m)

red==ml_lt

IIIS © V. Estivill-Castro 54

Fig4. Lights models with no delay as [8, Sec. 2.6.1 to 2.6.7].

(b) The island light.

SHOWING_GREEN
OnEntry{ il_lt=green; ml_lt=red;}
OnExit{}
{}

SHOWING_RED
OnEntry{ il_lt=red; }
OnExit{}
{}

(0<n_i) && (0==n_b2i)red==il_t l

IIIS © V. Estivill-Castro 55

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

(a) The mainland light.

SHOWING_GREEN
OnEntry{ ml_lt=green;
il_tl=red;
ml_pass=FALSE; }
OnExit{}
{}

SHOWING_RED
OnEntry{ ml_lt=red; }
OnExit{}
{}

(n_b2i + n_i < d) &&
 (0==n_b2m) && il_pass

red==ml_lt

IIIS © V. Estivill-Castro 56

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

(b) The island light.

SHOWING_GREEN
OnEntry{ il_lt=green;
ml_lt=red;
il_pass=FALSE; }
OnExit{}
{}

SHOWING_RED
OnEntry{ il_lt=red; }
OnExit{}
{}

(0<n_i) && (0==n_b2i)
 && ml_pass

red==il_t l

IIIS © V. Estivill-Castro 57

Figure 5 Modification to Fig. 3 to create the forced-alternation
model of [8, Sec. 2.8.8].

(c) The replaced states.

INCREMENTING_M2B
OnEntry{
n_b2i:=n_b2i+1:
ml_pass=TRUE; }
OnExit{}
{}

INCREMENTING_I2B
OnEntry{ n_i:=n_i-1:
n_b2m=n_b2m+1;
il_pass=TRUE;}
OnExit{}
{}

IIIS

Event-B considerations match
Logic-Labelled FMS
considerations
◗  “make clearer the separation between the

software controller and the physical
environment” [8, Page 89].

◗  “a closed model corresponding to the
complete mathematical simulation of the
pair formed by the software controller and
the environment” [8, Page 89].

© V. Estivill-Castro 58

IIIS © V. Estivill-Castro 59

Fig. 6 The 4 sensor behaviour models.

ON
OnEntry{ has_ML_out_happened=TRUE;}

OFF
OnEntry{ has_ML_out_happened=FALSE;}

is_car_pushing_M2B
!is_car_pushing_M2B

ON
OnEntry{ has_ML_in_happened=TRUE;}

OFF
OnEntry{ has_ML_in_happened=FALSE;}

is_car_pushing_B2M!is_car_pushing_B2M

ON
OnEntry{ has_IL_out_happened=TRUE;}

OFF
OnEntry{ has_IL_out_happened=FALSE;}

is_car_pushing_I2B!is_car_pushing_I2B

ON
OnEntry{ has_IL_out_happened=TRUE;}

OFF
OnEntry{ has_IL_out_happened=FALSE;}

is_car_pushing_I2B!is_car_pushing_I2B

(a)Mainland to bridge (b)Island to bridge

(c) Bridge to mainland (d)Bridge to island

IIIS © V. Estivill-Castro 60

Figure 7. The communication channels between the environment
and the software controller in Fig 3.

has_ML_in_happened

has_IL_in_happened

has_IL_out_happened

has_ML_out_happened

il_tl

ml_tl

ENVIRONMNET
 n_car_in_island,
 n_cars_bridge_2_island
 n_cars_bridge_2_mainland

SENSORS
MAINLAN_2_BRIDGE

is_car_pushing_M2B

ISLAND_2_BRIDGE
is_car_pushing_I2B

BRIDGE_2_ISLAND
is_car_pushing_B2I

BRIDGE_2_MAINLAND
is_car_pushing_B2M

LIGHTS
CAR_GENERATOR

SOFTWARE CONTROLLER
INTEGER n_b2m, n_i, n_b2M;
BOOL ml_tl, il_tl;

IIIS © V. Estivill-Castro 61

IIIS

UML-B requirements
◗  Event-B uses a model of control over

environment variables
•  (making sure the environment plays fair).
•  Event-B, a driver will never run a red light, for

example.
◗  This does not happen with LLFSMs

•  non-deterministic aspect that is captured in the
Kripke structure in NuSMV, capable of
reacting to the environment changing the
corresponding external variables at any time in
any way.

© V. Estivill-Castro 62

IIIS

The powered-window in the car
◗  Driver and passenger can

control a passenger window
◗  Obstacles when going up halt

the movement.
◗  Short push moves the window

all the way (down or up)
◗  Long push regulates the final

position (when the long push
terminates)

© V. Estivill-Castro 63

IIIS © V. Estivill-Castro 64

IIIS © V. Estivill-Castro 65

Figure 8. The LLFSM for the button of the passenger.

IDLE
OnEntry{ extern passangerShortUp;
extern passangerShortDown;
extern passangerLonUp;
extern passangerLongDown;
extern passangerUpPressed;
extern passangerDownPressed;
passangerShortUp=FALSE;
passangerShortDown=FALSE;
passangerLonUp=FALSE;
passangerLonDown=FALSE;}

SIGNALING_DOWN_PRESSED
OnEntry{
passangerShortDown=TRUE;}

WAITING
timeout(delay)

passangerDownPressed

!passangerDownPressed SIGNALING_LONG_DOWN
OnEntry{
passangerShortDown=FLASE;
passangerLongDown=TRUE;}

passangerDownPressed

WAITING_MIN !passangerDownPressedtimeout(min_delay)

!passangerDownPressed && timeout(min_delay)

SIGNALING_UP_PRESSED
OnEntry{
passangerShortUp=TRUE;}

passangerUpPressed
SIGNALING_LONG_UP

OnEntry{
passangerShortUp=FALSE;
passangerLongUp=TRUE;}

!passangerUpPressed && timeout(min_delay)

WAITINGtimeout(delay) passangerUpPressed

!passangerUpPressed

!passangerUpPressed

IIIS © V. Estivill-Castro 66

Figure 10. The LLFSM for the motor of the window.

MOVING_UP
OnEntry{ motor=UP;
}

NOT_MOVING
OnEntry{
extern obstacleFound;
extern atTop;
extern atBottom;
extern passangerShortUp;
extern passangerShortDown;
extern passangerLonUp;
extern passangerLongDown;
extern motor;
motor OFF;
}

MOVING_DOWN
OnEntry{ motor=DOWN;
}

MOVING_DOWN_MANUAL

MOVING_UP_MANUAL

obstacleFound

shallStopUpManual

shallStopDownManual

WAITING

obstacleFound

timeout(delay_4_obstacle)

atTop

atBottom

atBottom

shallGoUpManual

shallDownUpManual

shallGoUp

shallGoUp

shallGoDown

shallGoDown

IIIS

name{SHALLGOUP}.!
input{passangerLongUp}. input{passangerShortUp}. !
input{driverLongUp}. input{driverShortUp}.!
input{driverLongDown}. input{driverShortDown}.!
input{obstacleFound}. !
input{atTop}.!
!
UP0: {} => ~shallGoUp.!
!
UP1: passangerLongUp => shallGoUp. UP1>UP0.!
UP2: passangerShortUp => shallGoUp. UP2>UP0.!
UP3: driverLongUp => shallGoUp. UP3>UP0.!
UP4: driverShortUp => shallGoUp. UP4>UP0.!
!
UP5: driverLongDown => ~shallGoUp. UP5>UP1. UP5>UP2.!
UP6: driverShortDown => ~shallGoUp. UP6>UP1. UP6>UP2.!
UP7: obstacleFound => ~shallGoUp. UP7>UP1. UP7>UP2. UP7>UP3. UP7>UP4.!
UP8: atTop => ~shallGoUp. UP8>UP1. UP8>UP2. UP8>UP3. UP8>UP4.!
!
output{b shallGoUp,"shallGoUp"}.!

© V. Estivill-Castro 67

Figure 9. DPL coding for the predicate ShallGoUp.

IIIS

name{SHALLGODOWN}.!
input{passangerLongDown}. input{passangerShortDown}. !
input{driverLongUp}. input{driverShortUp}.!
input{driverLongDown}. input{driverShortDown}.!
input{obstacleFound}. !
input{atBottom}.!
!
DN0: {} => ~shallGoDown.!
!
DN1:passangerLongDown => shallGoDown. DN1>DN0.!
DN2:passangerShortDown => shallGoDown. DN2>DN0.!
DN3:driverLongDown => shallGoDown. DN3>DN0.!
DN4:driverShortDown => shallGoDown. DN4>DN0.!
!
DN5:driverLongUp => ~shallGoDown. DN5> DN1. DN5>DN2.!
DN6:driverShortUp => ~shallGoDown. DN6> DN1. DN6>DN2.!
!
DN7:obstacleFound => shallGoDown. DN7> DN6. DN7>DN5. DN7>DN0. !
!
DN8:atBottom => ~shallGoDown. DN8> DN7. DN8>DN4. DN8>DN3.!
 DN8>DN2. DN8>DN1.!
output{b shallGoDown,"shallGoDown"}..!

© V. Estivill-Castro 68

Figure 11. DPL coding for the predicate ShallGoDown.

IIIS

name{SHALLGOUPMANUAL}.!
input{passangerLongUp}. input{driverLongUp}.!
!
MUP0: {} => ~shallGoUpManual.!
!
MUP1: passangerLongUp => shallGoUpManual. MUP1>MUP0.!
MUP2: driverLongUp => shallGoUpManual. MUP2>MUP0.!
!
output{b shallGoUpManual,"shallGoUpManual"}.!

© V. Estivill-Castro 69

Figure 12. DPL coding for the predicate shallGoUpManual. !

IIIS

name{SHALLSTOPUPMANUAL}.!
input{passangerLongUp}. input{driverLongDown}.!
input{driverShortDown}. input{driverLongUp}. input{atTop}.!
!
SUP0: {} => shallStopUpManual.!
!
SUP1: passangerLongUp => ~shallStopUpManual. SUP1> SUP0. !
!
SUP2:driverLongDown => shallStopUpManual. SUP2> SUP1. !
SUP3:driverShortDown => shallStopUpManual. SUP3> SUP1.!
!
SUP4:driverLongUp => ~shallStopUpManual. SUP4> SUP2. SUP4>SUP3.!
!
SUP5: atTop => shallStopUpManual. SUP5>SUP4. !
!
output{b shallStopUpManual,"shallStopUpManual"}.!

© V. Estivill-Castro 70

Figure 13. DPL coding for the predicate shallStopUpManual.!

IIIS

shallGoUp≡ !
!(driverLongUp  
! !|| driverShortUp  
! !|| passangerLongUp || passangerShortUp) !
!&&!  
!(atTop !
! !|| obstacleFound  
! !|| driverLongDown || driverShortDown). !

© V. Estivill-Castro 71

Figure 14. Simple-C expression for the logic theory in Fig. 9.
!

IIIS

!SPEC AG (!
!(passangerShortUp = 1 -> ((passangerShortDown = 0 !
! !& passangerLongDown = 0) !
! !& passangerLongUp = 0)) | pc = M0S0R0) !

© V. Estivill-Castro 72

Figure 15. CTL formula that verifies that only
passangerShortUp is TRUE once some computation has
happened
!

IIIS © V. Estivill-Castro 73

Figure 16. Communication channels of the car-window controller
and its environment; the closed world model.

CONTROLLER(

Passenger(
Bu2on(Control(

Driver(
Bu2on(Control(

ENVIRONMENT(

Passenger(
Bu2on((

Driver(
Bu2on((

Motor(
Control(

Motor(
(

pa
ss

an
ge

rU
pP

re
ss

ed

pa
ss

an
ge

rD
ow

nP
re

ss
ed

dr
iv

er
Up

Pr
es

se
d

dr
iv

er
Do

wn
Pr

es
se

d

driverLongUp

driverLongDown
driverShortUp
driverShortDown

passengerLongUp

passengerLongDown
passengerShortUp
passengerShortDown

Top(
Sensor(

Obstacle(
Sensor(

Bo2om(
Sensor(

obstacleFound

atTop
atBottom

motor

IIIS

LTLSPEC  
G ((obstacleFound=1 & atTop=0 & driverLongUp=1 & motor=Up) -> !
 X (obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |!
 X (obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |!
 X (obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |!
 X (obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down |!
 X (obstacleFound=0 | atTop=1 | driverLongUp=0 | motor=Down !
)!
)!
)!
)!
)!
))!

© V. Estivill-Castro 74

Figure 17. Structure of the LTL formula that encodes that and
obstacle found will cause the motor to switch direction to going
down.

IIIS

Comparison with Event-B (and
its tool UML-B)
◗  Event-B results in 30-Page Event-B

specification [18]
◗  It is incomprehensible to the average

learned software engineer
◗  The specification is longer than the actual

code.

© V. Estivill-Castro 75

IIIS

Summary
◗  Logic-labelled finite-state machines are very

effective models of behaviour
•  Significantly well established event-driven version
•  But the logic-labelled reduces many complexities

without loosing expressive power
◗  We can simulate behaviours (detect faults)
◗  We can formally verify models
◗  We can perform fault injection and FMEA
◗  Complete Model-Driven Development

© V. Estivill-Castro 76

IIIS © V. Estivill-Castro 77

