Non-Monotonic Reasoning for
Localization in RoboCup

David Billington
Vladimir Estivill-Castro
Rene Hexel
Andre Rock

Wy Giriffith
Australia

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

=
v
P
r

university

Outline

» Reasoning and Localization

» Why reasoning and modelling with logic
» The Software Engineering justification
* The Hybrid Intelligent Agent justification

» Running reasoning on a AIBO ERS-7

¥s 39 Model Development and Results
_= 3) Conclusion

L university

Reasoning

S8) Deriving conclusions from facts

« Apparently, a fundamental characteristic of
Intelligence

» An expected aspect of intelligent systems

» Withdrawing conclusions in the light of
new evidence Is a capability usually
referred to as non-monotonic reasoning

vegored fgu

=
v
B
r

university

Our
environment

» RoboCup
A test-bed for Multi-Agent Systems

* We know our environment, so one would
expect to be able to construct a knowledge
base and apply reasoning

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
B
r

RoboCup environment is hard

» Non-deterministic

« | can not predict the state of the environment after |
perform an action

» Not accessible
« | can not sense all elements of the environment
» Dynamic
» Environment changes while | decide what action to take

D Teams

| need to negotiate, collaborate, distribute tasks and
goals

» Adversaries
» Of unknown capabilities

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

2
v
>
B

We demonstrate reasoning within
the task of localization

» Dynamically selecting proper inputs for
localization

 The classical example in RoboCup for the
Aibo league is that

A frame where both goals are visible indicates
something wrong with the object recognition task

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
>
r

Possible solutions

» Introduce sanity checks
« Filter out the frame If both goals are visible

» Pass it out to localization and expect the
sophistication of the algorithm (capacity to handle
error in sensor input) to handle these cases

» Kalman Filter
» Markov Localization
» Monte-Carlo localization

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

2
v
>
B

Our approach

Vision and
Object Recognition

Consistency
Module

Localization
Algorithm

university

Our approach

Consistency
Module

Non-monotonic logic that combines facts known
about the environment with what is reported
as visible in this frame

university

Why non-monotonic logic

» To reason about the inconsistent
Information provided by the sensors
(vision)

=3 » Without reasoning, all localization
methods must determine

* Prob(visible scene | position)

10

L university

Problem with localization
methods

» Illustration

» Prob (front goal visible & back goal visible | position) =0
» Not the best answer, or defines a large set of special cases
 Itis hard to express it as function of
Prob (front goal visible | position)
and
Prob (front goal visible | position)

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
>
r

Plausible logic

» Only non-monotonic logic with an efficient
non-looping algorithm

» Can prove using factual information and also
plausible information

D 3 types of rules

« A—l (factual information)
e Human(x) — Mammal(x) [All humans are mammals]

« B = f (plausible situations)
 Bird(x) = Fly(x) [Birds usually fly]
¢ A&_II
e {sick(x), Bird(x)} <FIly(x) [Sick birds may not fly]

12
Mi-PAL university

Plausible logic (cont)

» Rules are in an acyclic hierarchy
* R > RJ—
* Rule i is more informative that rule j.

=3 » Conclusion with one rule may be defeated
by the more informative rule

13

L university

Why reasoning and modelling
with logic
» The Software Engineering justification

» All the intelligence’’ (logic) about what
makes sense in an image (or sequence of
Images) Is properly encapsulated in a human
understandable logic

* Not a a series of “if ..then ...else” statements of
C++ In the code

 Can test completeness and correctness
 Can be updated easily

Mi-PAL university

[Hlustration

» Naturally to develop rules systems where the
new rules redefine exception to the previous
ones
« 3laws

1. A robot may not harm a human
2. A robot must obey a human unless it contradict law 1
3. A robot must protect itself unless contradicts rule 1 or 2

* Ripple down rules

* Rules are defined and new rules are subsequently added
to revise the cases not covered by the more general rules

e Atree that is a hierarchy of rules
— No formal reasoning

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
>
r

Modelling with standard logic

» A first model
{See(X)} w{—See{y} :y e Landmarks-{x}} — Cs(x)

* If I only see one object, then it is consistent

16

university

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

=
v
>
r

Modelling with standard logic

» A second model

C(x,y)={See(x),See(y)} A —-See{z} : z eLandmarks-{x,y}}
1. {SeeLtoR(x,y),FactLtoR(x,y,2)} « C(x,y) — Cs(x,y)
{SeeLtoR(y,x),FactLtoR(x,y,2)} < C(Xx,y) — Csl(x,y)
{Cs1(x,y),Post(x),Goal(y)} — Cs(x)
{Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} — Cs(x)

B~ L™

The world

17

university

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

2
v
>

Modelling with standard logic

» A second model

C(x,y)={See(x),See(y)} A —-See{z} : z eLandmarks-{x,y}}
1. {SeeLtoR(x,y),FactLtoR(x,y,2)} </ C(x,y) — Cs(x,y)
{SeeLtoR(y,x),FactLtoR(x,y,2)} < C(Xx,y) — Csl(x,y)
{Cs1(x,y),Post(x),Goal(y)} — Cs(x)
{Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} — Cs(x)

X -

Vision

B~ L™

The world

18

university

=
=a
=
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

2
v
>

Modelling with standard logic

» A second model

C(x,y)={See(x),See(y)} Af—See{z} : z eLandmarks-{x,y}}
1. {SeeLtoR(x,y),FactLtoR(x,y,2)} « C(x,y) — Cs(x,y)
{SeeLtoR(y,x),FactLtoR(x,y,2)} < C(X,y) — Csl(x,y)
{Cs1(x,y),Post(x),Goal(y)} — Cs(x)
{Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} — Cs(x)

X

B~ L™

The world Vision

=
=a
=
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

2
v
>

Modelling with standard logic

» A second model

C(x,y)={See(x),See(y)} A —-See{z} : z eLandmarks-{x,y}}
1. {SeeLtoR(x,y),FactLtoR(x,y,2)} « C(x,y) — Cs(x,y)
{SeeLtoR(y,x),FactLtoR(x,y,2)} < C(X,y) — Csl(x,y)
{Cs1(x,y),Post(x),Goal(y)} — Cs(x)
{Cs1(x,y),Post(x),Post(y),BigSmall(x,y)} — Cs(x)

B~ L™

The world Vision

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

2
v
>

Problems with standard logic

» Rapidly we have the same situation

« Many different cases coded essentially independently
» Seeing exactly 3 objects need 26 rules
» Seeing exactly 4 objects needs 120 rules

* Proves most C++ is incomplete
 (and perhaps inconsistent)
 Survives because of the frame rate
« Concerns on correctness/reliability of intelligent systems

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
>
r

Implementing Plausible Logic on
SONY Alibo

» Besides Plausible Logic we develop a Logic
Programming Language - DPL
« Create definitions, macros, determine what to prove

» A HASKELL implementation of the inference
algorithm of plausible logic

« A program in DPL that proves off-line

 Finds the equivalent logic expression to Cs(Front goal) in
terms of \World predicates and Test predicates

A simulator for validation of-line and gluing code

D
» A Template method in the consistency module on
the Aibo

22
Mi-PAL university

Model 1

» R1: => ~Cs(X).
D R2: See(X) => Cs(X).
) R2>R1.

» Validates the system and implementation
process

23

university

=
=a
T
o
a
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

2
v
>
r

Model 2

Rl1: => ~Cs(X).

R2: See(x) => Cs(X).

R2>R1.

R3: {See(x),See(y),Opp(x,y) => ~Cs(X).

R3>R2

R4: {See(x),See(y),SeeLtoR(y,x),LR(x,y)} =>~Cs(x)
R4 :{See(x),See(y),SeeLtoT(y,x),LR(X,y)=>~cs(y)
R4>R2

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

university

=
v
>
r

[Hlustration

o] File Edit Settings Help

I have a mnessage --- 20

Flaced a consistent object==40

I have a message --- 21

I have a mnessage --- 22

I have a message --- 20

Placed a consistent object==40
D225c57c0

In Behavior Control inside Do Behavior
I have a mnessage --- 21

I have a message --- 22

I have a mnessage --- 20

Placed a conziztent object==40
225037 C0

In Behavior Control inside Do Behawvior
I have a message --- 21

I have a mnessage --- 27

I have a message --- 20

Placed a consistent object==40
22Bc37 o0

In Behavior Control inside Do Behayior
I have a message --- 21

I have a mnessage --- 22

I have a mnessage --- 20

Placed a consistent object==40

ki mimifictisiiciciiad [r2]

File Component Debuy Help
% AIBO: Connacted. .:

The left post is correct but the right post and

goal are inverted

5

university

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

PAL

Model 3

Rl1: => ~Cs(X).

R2: See(X) => Cs(X).
R2>R1.

R3: {See(x),See(y),O0pp(x,y) => ~Cs(X).

R3>R2

R4: {See(x),See(y),SeelLtoR(y,x),LR(X,y)} =~Cs(xX)
R4:{See(x),See(y),SeeLtoT(y,x),LR(X,y)=>~cs(y)

R5: {See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(x,y,z)} =>
Cs(y)

R5:{See(x),See(y),See(z),SeeLtoR(y,z),SeeLtoR(z,x),Adj(X,y,z)}
=>Cs(X)

R5:{See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(X,y,z)=>Cs(xX)
R5:{See(x),See(y),See(z),SeeLtoR(z,x),SeeLtoR(x,y),Adj(X,y,z)=>Cs(y)
R5>R4

R6:{See(x0O<see(y),See(z),SeeLtoR(x,z)SeeLtoR(z,y),LR(X,y),LR(y,z),0p
pP(x,2z)}=>Cs(X)
R6:{See(x),See(y),See(z),SeeLtoR(x,z),SeeLtoR(z,y),LR(X,y),LR(y,z),0
pp(x,2z)}=>Cs(y)

R6>R3
R6>R4

university

[Hlustration

| File Edit Seftings Help

Dw22Be a7

In Behavior Control ingide Do Behavior
I hawve a message --- 21

I have a message -—-—- 22

I have a message ——- 20

I hawve a messzage --- 21

I hawve a message --- 27

I have a message —-—- 20

Dw22Be a7

In Behavior Control ingide Do Behavior
I hawve a message --- 21

I have a message -—-—- 22

I have a message ——- 20

I hawve a messzage --- 21

I hawve a message --- 27

I have a message —-—- 20

I have a message ——- 21

I hawve a messzage --- 27

I hawve a message --- 20

I have a message ——- 21

I have a message ——- 22

I hawve a messzage --- 20

Ox225c 3 e

In Behavior Control inside Do Behavior

O 7 4= e |

but the right post appears

N S = [§
LComponert Drebug Help

AIBC: Mot Connactad.

The left post and goal appear in the correct order,

left most ;

university

The module In action

AIBOD Viziaon

File LComponent Debug Help

x File: imgooo Qa2 DLL: Dechsion List Classitier

{15, 142)

e DL Goal Anahie DLL: Baacon Anah '@ DLL: Ball Anahsis

I .
13 147,13 12 (202, 152) 1 3 (185, 159) 1 (3,141

university

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

=
v
>
r

AIBD Yision Workshop 2 L
t Debug Help

(15, 142)

DLL: Geal An 1 nah DLL: Ball Ana

3 = (148, 0

15| N EEREE . (42, 46

=
=a
T
o
g
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

2
v
>

university

[T AIBD Vis

File LComponent Drebiug Help

Ca

DLL: Decision List Classifiar

{15, 142)

DLL: Geal Anabysis DLL: Beacon Anak L'. DLL: Ball Anabysis

i
| E \ .
3 W \ v "

1 3 j207, 158 = (200, CTA 1 3 1175, 184 1 (42, 108)

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

=
v
>
r

university

Discussion

» CPU times were very positive
 Model 1 : 44 microseconds
» Model 2 : 60 microseconds

* Model 3: 110 microseconds
e On ERS-7 SONY Aibo

=
=a
T
o
g
B
' 3
Mo
Sy~
(==
o
| e
o
<
o
| =

=
v
B
r

university

Conclusion

» The initial progress on logic and
reasoning within Al has largely been
discarded from mobile robotics In favour
of reactive architectures

» We demonstrate the use of non-
monotonic reasoning in the challenging
application of RoboCup

32

Mi-PAL university

THANK
YOU

33

university

