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Localization

• Fundamental 
problem of mobile 
autonomous robots

• Use sensor 
information to 
determine the robot 
whereabouts

Photo: U. Bremen
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Variants to localization

Self-localization
• Recognize where I am now on a previously 

described world
Position tracking
• Regularly monitoring position

Kidnap problem
• Recovering for being transported (uniformed)
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Methods
The classical triangulation
• Sensors must be very accurate
• Enough landmarks
• No ambiguity

The modern methods
• Kalman filters
• Markov Models
• Monte-Carlo Localization
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General framework

Understanding
of movement

Sensor info
at new location

Prediction
of whereabouts

New belief
of whereabouts

Previous belief
of whereabouts
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Kalman filter
Very popular for motion tracking
Models whereabouts as probability distribution
• A multivariate Gaussian
• The estimated current position has a probability

Can be interpreted as an application of Bayes
Theory
Difficulty with kidnap problem or self-localization 
problem
• Some variants improve upon this

Difficulty with ambiguous settings
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Markov Models

Allow for the representation of belief to be 
a piecewise linear function
More flexible model of belief
• And of sensor error and of motion modelling 

uncertainty
Use Bayes rule to update belief
Computational requirements are high
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Monte-Carlo Localization

Represent belief as a very large sample of 
potential postures (positions)
• Also known as particles or marbles

Shown to be superior to Extended Kalman Filter 
and Markov models[Gutmann and Fox, 2002]
Shown to be effective for SONY Aibo league 
(Ambiguity of localizing on lines) [Röfer and
Jüngel,2004]
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More advantages
Monte-Carlo Localization

Belief does not need to be a parametric 
probabilistic model
• Maintain ambiguous hypothesis

Sensor (Noise) model can also very flexible
• Several sensors (data fusion)

Motion model can also be flexible
• Robot skates, pushed, pick-ed up

Simple to implement



© Vladimir Estivill-Castro

11

Monte-Carlo localization 
working example
One dimensional example, with particles in {0,1,…,9}

0 1 3 4 72 5 6

A particle     has a weight attached to it

Small weight Large weight

8 9
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Initialization
Random particles in {0,1,…,9} with random weights

0 1 3 4 72 5 6 8 9
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Apply an action
For as many as the total number of particles

Draw a particle using the distribution and 
apply motion model to the particle

0 1 3 4 72 5 6 8 9

Move one square right
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Apply an action
For as many as the total number of particles

Draw a particle using the distribution and 
apply motion model to the particle

0 1 3 4 72 5 6 8 9

Move one square right

0 1 3 4 72 5 6 8 9

Motion model may include failure possibility
(one in 4 moves does not happen)
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Apply an action
For as many as the total number of particles

Draw a particle using the distribution and 
apply motion model to the particle

0 1 3 4 72 5 6 8 9

Move one square right

0 1 3 4 72 5 6 8 9
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0 1 3 4 72 5 6 8 9

Read sensor information
For each particle, 

modify weight as how likely is that
such a sensor reading would have been resulted from
that posture

0 1 3 4 72 5 6 8 9

Suppose we read 4
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Monte Carlo disadvantages

Stochastic nature of algorithm implies number 
of particles can not be small
Must model the possibility of a kidnap by 
randomly introducing new particles to the space
Slow to converge if the sensors are too accurate
Little theoretical foundation for some of its 
fixes
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Hierarchical MCL

Organize the k-dimensional space for 
a pose by a kd-tree[Bentley,1975].
• Partition the space at each level by an 

alternating hyper-planes
Place a Vanilla MCL at each node to 
determine the section of the space for 
the whereabouts of the robot
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• Illustration in 2D
– First division with 

respect to x

kd-tree

• Illustration in 2D

• Illustration in 2D

– Second partition 
with respect to y

x0

≥<

y1

<< ≥ ≥

• Illustration in 2D

– Third partition with 
respect to x

x2

y3

• Illustration in 2D

– A region corresponds to a path 
in the tree
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Two variants of Hierarchical 
MCL

Full description
• At each node a Vanilla MCL with particles that 

represent a complete pose descriptor
• A vector x→

Zone descriptor
• At each node a Vanilla MCL with particles that 

are in the discrete universe {0,1}
• “Go left –0; Go right 1.”
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Hierarchical MCL
1 dimensional illustration
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Intuition

Less particles are necessary to determine 
which half of a region the robot is in
Many times we just need more global 
information for decision making than very 
specific information
• Which half of the field I am in can be answered 

by the root node
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Two schemes for allocation of 
particles

Let m be the number of particles you would use in 
Vanilla MCL
Schema 1, place m0=m/(depth+1) at each node 
and the complexity of Hierarchical MCL is the 
equivalent
Schema 2 place m0=m(1-1/2depth) and then 
mi=2mi+1 and the space requirements of 
Hierarchical MCL are equivalent to Vanilla MCL
(with equivalent time complexity)
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Important implementation 
aspects

No migration of particles to siblings
Particles in a node represent positions outside the 
region covered by the node
Incorporation of high precision sensors and low 
precision sensors
• Conversion of high precision sensors to virtual low 

resolution sensors
Some percentage of particles are always random
Conditional approach to the importance step
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No migration of particles to 
siblings

A particle at a node 
receives the Motion 
Model modification
Particle does not 
shift to sibling
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Locally, this represents 
the robot is not at this 
node
With in ε so that the 
Motion Model can 
place the particle if the 
robot enter the region 
of the node again
Upper levels direct the 
belief

Particles in a node represent 
positions outside the region 
covered by the node
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Incorporation of low precision 
sensors

A sensor of low 
accuracy does not 
modify nodes deep in 
the tree
• Can be skipped

A sensor with high 
accuracy is made a 
virtual low resolution 
sensor on shallow 
nodes

A sensor of low 
accuracy does not 
modify nodes deep in 
the tree
• Can be skipped



© Vladimir Estivill-Castro

28

Incorporation of high precision 
sensors

A sensor with high 
accuracy is made a 
virtual low resolution 
sensor on shallow 
nodes
• Otherwise particles in 

one half are essentially  
modified by stochastic 
noise

• The only hope is the 
particles included for the 
kidnap problem
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Some percentage of particles are 
always random

At every node, 
• we take 90% of the particles drawn from the 

current representation of the probability 
distribution

• We take 10% of the particles as random poses
Protection for stochastic noise and kidnap 
problem
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Conditional approach to the 
importance step

Once the iteration 
loop is performed at 
the loop, the 
children is chosen to 
go down the tree and 
perform the iteration 
loop

Before
the motion
goes right

After the motion goes left
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Experiments
Self-localization
problem

Vanilla MCL /36 Particles /
Low Precision Sensors

Vanilla MCL /16 Particles /
Low Precision Sensors

Hybrid MCL /6-uniform Particles /
Low Precision Sensors

Vanilla MCL /36 Particles /
High Precision Sensors

Hybrid MCL /36-root and half in child particles 
/Low Precision Sensors
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Experiments
Kidnap problem 
problem Vanilla MCL /36 Particles /

Low Precision Sensors
Vanilla MCL /16 Particles /

Low Precision Sensors
Hybrid MCL /6-uniform Particles /

Low Precision Sensors
Vanilla MCL /36 Particles /

High Precision Sensors
Hybrid MCL /36-root and half in child particles 

/Low Precision Sensors
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Discussion
The approach called kd-trees [Guttmann and Fox, 2002] 
and [Thrun et al, 2001] is truly a kernel density tree 
approach to represent piece-wise linear distributions
• Not a mechanism to structure particles efficiently

The improvements to Markov Localization (pre-
computation of sensor model and selective update)[Fox et 
al 1991] demand high memory requirements
• Closest work is Octrees approach [Burgard et al, 1998] 

but dynamically upgrading the tree is not trivial
• Work is still proportional to nodes in the tree

• Our work is proportional to path to the leaf in the tree

[Fox,2003] discusses managing particles efficiently
• Our two schemes for particle allocation handle this
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Conclusion

Hierarchical MCL allows incorporation 
of sensors of different precision at the 
right level of information content.
Method is computationally competitive 
with Vanilla MCL and faster to answer 
global / regional queries
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