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Outline

» Localization
« Kalman filters
» Markov approach
* Monte Carlo methods

» Our method
D Detalls that are needed

» Experiment and Results
» Conclusion
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|_ocalization

e Fundamental
problem of mobile
autonomous robots

e Use sensor
Information to
determine the robot Phot: U, remen
whereabouts
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Variants to localization

» Self-localization

* Recognize where | am now on a previously
described world

» Position tracking
* Regularly monitoring position

» Kidnap problem
» Recovering for being transported (uniformed)

.NIUI‘NN-:-MOFN&Z'N‘WWII |

2
v
>
r

university



Methods

D The classical triangulation
» Sensors must be very accurate
* Enough landmarks
* No ambiguity

» The modern methods
« Kalman filters "
» Markov Models
* Monte-Carlo Localization

triangulation
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General framework

Previous belief Understanding
of whereabouts of movement

Prediction Sensor info
of whereabouts at new location

NEYR TR
of whereabouts
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Kalman filter

» Very popular for motion tracking

» Models whereabouts as probability distribution
« A multivariate Gaussian
» The estimated current position has a probability

» Can be interpreted as an application of Bayes
Theory

» Difficulty with kidnap problem or self-localization
problem

¢ Some variants improve upon this
» Difficulty with ambiguous settings
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Markov Models

» Allow for the representation of belief to be
a piecewise linear function

D More flexible model of belief

« And of sensor error and of motion modelling
uncertainty

D Use Bayes rule to update belief
» Computational requirements are high
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Monte-Carlo Localization

» Represent belief as a very large sample of
potential postures (positions)

» Also known as particles or marbles

» Shown to be superior to Extended Kalman Filter
and Markov models[Gutmann and Fox, 2002]

» Shown to be effective for SONY Aibo league
(Ambiguity of localizing on lines) [RoOfer and
Jungel,2004]
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More advantages
Monte-Carlo Localization

» Belief does not need to be a parametric
probabilistic model

« Maintain ambiguous hypothesis

D Sensor (Noise) model can also very flexible
 Several sensors (data fusion)

» Motion model can also be flexible
* Robot skates, pushed, pick-ed up

» Simple to implement

10
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Monte-Carlo localization
working example

One dimensional example, with particles in {0,1,...,9}

0|12 244 5 6 7 g 9

A particle @ has a weight attached to it

o Small weight @ Large weight
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Initialization
Random particles in {0,1,...,9} with random weights
"0 2 B 5 6 7 9
o % | % o 3

l'-’o"*NN"'MOFN&ZIN‘WW" |

e
T
B
r

university



Apply an action

For as many as the total number of particles
Draw a particle using the distribution and
apply motion model to the particle
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Apply an action

For as many as the total number of particles
Draw a particle using the distribution and
apply motion model to the particle
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Motion model may include failure possibility
(one in 4 moves does not happen)
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Apply an action

For as many as the total number of particles
Draw a particle using the distribution and
apply motion model to the particle
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Read sensor information

For each particle,
modify weight as how likely is that
such a sensor reading would have been resulted from
that posture

Suppose we read 4
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Monte Carlo disadvantages

» Stochastic nature of algorithm implies number
of particles can not be small

» Must model the possibility of a kidnap by
randomly introducing new particles to the space

» Slow to converge If the sensors are too accurate

» Little theoretical foundation for some of Its
fixes
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Hierarchical MCL

» Organize the k-dimensional space for
a pose by a kd-tree[Bentley,1975].

« Partition the space at each level by an
alternating hyper-planes
» Place a Vanilla MCL at each node to
determine the section of the space for
the whereabouts of the robot
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kd-tree

e [llustration in 2D

— First division with
respect to x

— Second partition
with respect to y

— Third partition with
respect to x

— A region corresponds to a path
In the tree

19
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Two variants of Hierarchical
MCL

» Full description

At each node a Vanilla MCL with particles that
represent a complete pose descriptor

e A vector x

D Zone descriptor

At each node a Vanilla MCL with particles that
are in the discrete universe {0,1}

e “Go left -0; Go right 1.”
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Intuition

D Less particles are necessary to determine
which half of a region the robot is In

» Many times we just need more global
Information for decision making than very
specific information

* Which half of the field | am In can be answered
by the root node
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Two schemes for allocation of
particles

» Let m be the number of particles you would use In
Vanilla MCL

» Schema 1, place my=m/(depth+1) at each node
and the complexity of Hierarchical MCL is the
equivalent

» Schema 2 place my=m(1-1/2%rth) and then
m;=2m, , and the space requirements of
Hierarchical MCL are equivalent to Vanilla MCL

» (with equivalent time complexity)
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Important implementation
aspects

» No migration of particles to siblings

» Particles in a node represent positions outside the
region covered by the node

» Incorporation of high precision sensors and low
precision sensors

 Conversion of high precision sensors to virtual low
resolution sensors

» Some percentage of particles are always random
» Conditional approach to the importance step
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No migration of particles to
siblings

» A particle at a node
receives the Motion
Model modification

» Particle does not
shift to sibling
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Particles In a node represent
positions outside the region
covered by the node

» Locally, this represents
the robot Is not at this
node

» With in € so that the
Motion Model can
place the particle if the
robot enter the region
of the node again

» Upper levels direct the
belief
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Incorporation of low precision
Sensors

» A sensor of low
accuracy does not
modify nodes deep In
the tree

» Can be skipped
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Incorporation of high precision

SENSOIS

» A sensor with high
accuracy is made a
virtual low resolution
sensor on shallow
nodes

 Otherwise particles in
one half are essentially

modified by stochastic
noise
e The only hope is the

particles included for the
Kidnap problem
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Some percentage of particles are
always random

D At every node,

» we take 90% of the particles drawn from the
current representation of the probability
distribution

* We take 10% of the particles as random poses

D Protection for stochastic noise and kidnap
problem
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Conditional approach to the

Importance step

» Once the iteration
loop Is performed at
the loop, the
children is chosen to
go down the tree and
perform the iteration
loop

== Before
the motion
goes right

After the motion goes left
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Experiments

Self-localization
problem
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Vanilla MCL /36 Particles /
Low Precision Sensors
Vanilla MCL /16 Particles /
L_ow Precision Sensors
Hybrid MCL /6-uniform Particles /
Low Precision Sensors
Vanilla MCL /36 Particles /
High Precision Sensors
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Experiments

Kidnap problem
problem

140 .

Vanilla MCL /36 Particles /
Low Precision Sensors
Vanilla MCL /16 Particles /
L_ow Precision Sensors
Hybrid MCL /6-uniform Particles /
Low Precision Sensors
100 - Vanilla MCL /36 Particles /
High Precision Sensors
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Discussion

» The approach called kd-trees [Guttmann and Fox, 2002]
and [Thrun et al, 2001] is truly a kernel density tree
approach to represent piece-wise linear distributions

* Not a mechanism to structure particles efficiently

» The improvements to Markov Localization (pre-
computation of sensor model and selective update)[Fox et
al 1991] demand high memory requirements

» Closest work is Octrees approach [Burgard et al, 1998]
but dynamically upgrading the tree is not trivial

« Work is still proportional to nodes in the tree
» Our work is proportional to path to the leaf in the tree

» [Fox,2003] discusses managing particles efficiently
» Our two schemes for particle allocation handle this
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Conclusion

» Hierarchical MCL allows incorporation
of sensors of different precision at the
right level of information content.

» Method Is computationally competitive
with Vanilla MCL and faster to answer
global / regional queries
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